Cargando…
A Unified Local–Global Feature Extraction Network for Human Gait Recognition Using Smartphone Sensors
Smartphone-based gait recognition has been considered a unique and promising technique for biometric-based identification. It is integrated with multiple sensors to collect inertial data while a person walks. However, captured data may be affected by several covariate factors due to variations of ga...
Autores principales: | Das, Sonia, Meher, Sukadev, Sahoo, Upendra Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182843/ https://www.ncbi.nlm.nih.gov/pubmed/35684589 http://dx.doi.org/10.3390/s22113968 |
Ejemplares similares
-
Recurrent Neural Network for Inertial Gait User Recognition in Smartphones
por: Fernandez-Lopez, Pablo, et al.
Publicado: (2019) -
Local Pattern Transformation Based Feature Extraction for Recognition of Parkinson’s Disease Based on Gait Signals
por: Priya, S. Jeba, et al.
Publicado: (2021) -
Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors
por: Moreira, Dinis, et al.
Publicado: (2021) -
Feature Extraction Methods Proposed for Speech Recognition Are Effective on Road Condition Monitoring Using Smartphone Inertial Sensors
por: Cabral, Frederico Soares, et al.
Publicado: (2019) -
An Automatic Gait Feature Extraction Method for Identifying Gait Asymmetry Using Wearable Sensors
por: Anwary, Arif Reza, et al.
Publicado: (2018)