Cargando…
Blood-Vessel-Inspired Hierarchical Trilayer Scaffolds: PCL/Gelatin-Driven Protein Adsorption and Cellular Interaction
Fabrication of scaffolds with hierarchical structures exhibiting the blood vessel topological and biochemical features of the native extracellular matrix that maintain long-term patency remains a major challenge. Within this context, scaffold assembly using biodegradable synthetic polymers (BSPs) vi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182901/ https://www.ncbi.nlm.nih.gov/pubmed/35683808 http://dx.doi.org/10.3390/polym14112135 |
_version_ | 1784724153786433536 |
---|---|
author | Rodriguez-Soto, Maria A. Garcia-Brand, Andres J. Riveros, Alejandra Suarez, Natalia A. Serrano, Fidel Osma, Johann F. Muñoz Camargo, Carolina Cruz, Juan C. Sandoval, Nestor Briceño, Juan C. |
author_facet | Rodriguez-Soto, Maria A. Garcia-Brand, Andres J. Riveros, Alejandra Suarez, Natalia A. Serrano, Fidel Osma, Johann F. Muñoz Camargo, Carolina Cruz, Juan C. Sandoval, Nestor Briceño, Juan C. |
author_sort | Rodriguez-Soto, Maria A. |
collection | PubMed |
description | Fabrication of scaffolds with hierarchical structures exhibiting the blood vessel topological and biochemical features of the native extracellular matrix that maintain long-term patency remains a major challenge. Within this context, scaffold assembly using biodegradable synthetic polymers (BSPs) via electrospinning had led to soft-tissue-resembling microstructures that allow cell infiltration. However, BSPs fail to exhibit the sufficient surface reactivity, limiting protein adsorption and/or cell adhesion and jeopardizing the overall graft performance. Here, we present a methodology for the fabrication of three-layered polycaprolactone (PCL)-based tubular structures with biochemical cues to improve protein adsorption and cell adhesion. For this purpose, PCL was backbone-oxidized (O-PCL) and cast over a photolithography-manufactured microgrooved mold to obtain a bioactive surface as demonstrated using a protein adsorption assay (BSA), Fourier transform infrared spectroscopy (FTIR) and calorimetric analyses. Then, two layers of PCL:gelatin (75:25 and 95:5 w/w), obtained using a novel single-desolvation method, were electrospun over the casted O-PCL to mimic a vascular wall with a physicochemical gradient to guide cell adhesion. Furthermore, tensile properties were shown to withstand the physiological mechanical stresses and strains. In vitro characterization, using L929 mouse fibroblasts, demonstrated that the multilayered scaffold is a suitable platform for cell infiltration and proliferation from the innermost to the outermost layer as is needed for vascular wall regeneration. Our work holds promise as a strategy for the low-cost manufacture of next-generation polymer-based hierarchical scaffolds with high bioactivity and resemblance of ECM’s microstructure to accurately guide cell attachment and proliferation. |
format | Online Article Text |
id | pubmed-9182901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91829012022-06-10 Blood-Vessel-Inspired Hierarchical Trilayer Scaffolds: PCL/Gelatin-Driven Protein Adsorption and Cellular Interaction Rodriguez-Soto, Maria A. Garcia-Brand, Andres J. Riveros, Alejandra Suarez, Natalia A. Serrano, Fidel Osma, Johann F. Muñoz Camargo, Carolina Cruz, Juan C. Sandoval, Nestor Briceño, Juan C. Polymers (Basel) Article Fabrication of scaffolds with hierarchical structures exhibiting the blood vessel topological and biochemical features of the native extracellular matrix that maintain long-term patency remains a major challenge. Within this context, scaffold assembly using biodegradable synthetic polymers (BSPs) via electrospinning had led to soft-tissue-resembling microstructures that allow cell infiltration. However, BSPs fail to exhibit the sufficient surface reactivity, limiting protein adsorption and/or cell adhesion and jeopardizing the overall graft performance. Here, we present a methodology for the fabrication of three-layered polycaprolactone (PCL)-based tubular structures with biochemical cues to improve protein adsorption and cell adhesion. For this purpose, PCL was backbone-oxidized (O-PCL) and cast over a photolithography-manufactured microgrooved mold to obtain a bioactive surface as demonstrated using a protein adsorption assay (BSA), Fourier transform infrared spectroscopy (FTIR) and calorimetric analyses. Then, two layers of PCL:gelatin (75:25 and 95:5 w/w), obtained using a novel single-desolvation method, were electrospun over the casted O-PCL to mimic a vascular wall with a physicochemical gradient to guide cell adhesion. Furthermore, tensile properties were shown to withstand the physiological mechanical stresses and strains. In vitro characterization, using L929 mouse fibroblasts, demonstrated that the multilayered scaffold is a suitable platform for cell infiltration and proliferation from the innermost to the outermost layer as is needed for vascular wall regeneration. Our work holds promise as a strategy for the low-cost manufacture of next-generation polymer-based hierarchical scaffolds with high bioactivity and resemblance of ECM’s microstructure to accurately guide cell attachment and proliferation. MDPI 2022-05-24 /pmc/articles/PMC9182901/ /pubmed/35683808 http://dx.doi.org/10.3390/polym14112135 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rodriguez-Soto, Maria A. Garcia-Brand, Andres J. Riveros, Alejandra Suarez, Natalia A. Serrano, Fidel Osma, Johann F. Muñoz Camargo, Carolina Cruz, Juan C. Sandoval, Nestor Briceño, Juan C. Blood-Vessel-Inspired Hierarchical Trilayer Scaffolds: PCL/Gelatin-Driven Protein Adsorption and Cellular Interaction |
title | Blood-Vessel-Inspired Hierarchical Trilayer Scaffolds: PCL/Gelatin-Driven Protein Adsorption and Cellular Interaction |
title_full | Blood-Vessel-Inspired Hierarchical Trilayer Scaffolds: PCL/Gelatin-Driven Protein Adsorption and Cellular Interaction |
title_fullStr | Blood-Vessel-Inspired Hierarchical Trilayer Scaffolds: PCL/Gelatin-Driven Protein Adsorption and Cellular Interaction |
title_full_unstemmed | Blood-Vessel-Inspired Hierarchical Trilayer Scaffolds: PCL/Gelatin-Driven Protein Adsorption and Cellular Interaction |
title_short | Blood-Vessel-Inspired Hierarchical Trilayer Scaffolds: PCL/Gelatin-Driven Protein Adsorption and Cellular Interaction |
title_sort | blood-vessel-inspired hierarchical trilayer scaffolds: pcl/gelatin-driven protein adsorption and cellular interaction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182901/ https://www.ncbi.nlm.nih.gov/pubmed/35683808 http://dx.doi.org/10.3390/polym14112135 |
work_keys_str_mv | AT rodriguezsotomariaa bloodvesselinspiredhierarchicaltrilayerscaffoldspclgelatindrivenproteinadsorptionandcellularinteraction AT garciabrandandresj bloodvesselinspiredhierarchicaltrilayerscaffoldspclgelatindrivenproteinadsorptionandcellularinteraction AT riverosalejandra bloodvesselinspiredhierarchicaltrilayerscaffoldspclgelatindrivenproteinadsorptionandcellularinteraction AT suareznataliaa bloodvesselinspiredhierarchicaltrilayerscaffoldspclgelatindrivenproteinadsorptionandcellularinteraction AT serranofidel bloodvesselinspiredhierarchicaltrilayerscaffoldspclgelatindrivenproteinadsorptionandcellularinteraction AT osmajohannf bloodvesselinspiredhierarchicaltrilayerscaffoldspclgelatindrivenproteinadsorptionandcellularinteraction AT munozcamargocarolina bloodvesselinspiredhierarchicaltrilayerscaffoldspclgelatindrivenproteinadsorptionandcellularinteraction AT cruzjuanc bloodvesselinspiredhierarchicaltrilayerscaffoldspclgelatindrivenproteinadsorptionandcellularinteraction AT sandovalnestor bloodvesselinspiredhierarchicaltrilayerscaffoldspclgelatindrivenproteinadsorptionandcellularinteraction AT bricenojuanc bloodvesselinspiredhierarchicaltrilayerscaffoldspclgelatindrivenproteinadsorptionandcellularinteraction |