Cargando…

The Effect of Soil Water Deficiency on Water Use Strategies and Response Mechanisms of Glycyrrhiza uralensis Fisch

We aimed to investigate the water use strategies and the responses to water shortages in Glycyrrhiza uralensis, which is a dominant species in the desert steppe. Water stress gradients included control, mild, moderate, and severe. The time intervals were 15, 30, 45, and 60 d. Our study suggested tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Kechen, Hu, Haiying, Xie, Yingzhong, Fu, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182905/
https://www.ncbi.nlm.nih.gov/pubmed/35684237
http://dx.doi.org/10.3390/plants11111464
_version_ 1784724154939867136
author Song, Kechen
Hu, Haiying
Xie, Yingzhong
Fu, Li
author_facet Song, Kechen
Hu, Haiying
Xie, Yingzhong
Fu, Li
author_sort Song, Kechen
collection PubMed
description We aimed to investigate the water use strategies and the responses to water shortages in Glycyrrhiza uralensis, which is a dominant species in the desert steppe. Water stress gradients included control, mild, moderate, and severe. The time intervals were 15, 30, 45, and 60 d. Our study suggested that with the aggravation of water stress intensity, the total biomass of Glycyrrhiza uralensis gradually decreased and allometric growth was preferred to underground biomass accumulation. From 30 d and mild to moderate water stress, the water potential (WP) of leaves decreased considerably compared to the CK. The relative water content (EWC) decreased over time and had a narrow range of variation. Proline (PR) was continuously increased, then declined at 45–60 d under severe and more severe water stress. The δ(13)C values increased in all organs, showed roots > stems > leaves. The net photosynthetic rate (Pn) and transpiration rate (Tr) decreased to varying degrees. The instantaneous water use efficiency (WUEi) and limiting value of stomata (Ls) increased continuously at first and decreased under severe water stress. Meanwhile, severe water stress triggered the most significant changes in chloroplast and guard cell morphology. In summary, Glycyrrhiza uralensis could maintain water content and turgor pressure under water stress, promote root biomass accumulation, and improve water use efficiency, a water-conservation strategy indicating a mechanism both avoidable dehydration and tolerable drought.
format Online
Article
Text
id pubmed-9182905
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91829052022-06-10 The Effect of Soil Water Deficiency on Water Use Strategies and Response Mechanisms of Glycyrrhiza uralensis Fisch Song, Kechen Hu, Haiying Xie, Yingzhong Fu, Li Plants (Basel) Article We aimed to investigate the water use strategies and the responses to water shortages in Glycyrrhiza uralensis, which is a dominant species in the desert steppe. Water stress gradients included control, mild, moderate, and severe. The time intervals were 15, 30, 45, and 60 d. Our study suggested that with the aggravation of water stress intensity, the total biomass of Glycyrrhiza uralensis gradually decreased and allometric growth was preferred to underground biomass accumulation. From 30 d and mild to moderate water stress, the water potential (WP) of leaves decreased considerably compared to the CK. The relative water content (EWC) decreased over time and had a narrow range of variation. Proline (PR) was continuously increased, then declined at 45–60 d under severe and more severe water stress. The δ(13)C values increased in all organs, showed roots > stems > leaves. The net photosynthetic rate (Pn) and transpiration rate (Tr) decreased to varying degrees. The instantaneous water use efficiency (WUEi) and limiting value of stomata (Ls) increased continuously at first and decreased under severe water stress. Meanwhile, severe water stress triggered the most significant changes in chloroplast and guard cell morphology. In summary, Glycyrrhiza uralensis could maintain water content and turgor pressure under water stress, promote root biomass accumulation, and improve water use efficiency, a water-conservation strategy indicating a mechanism both avoidable dehydration and tolerable drought. MDPI 2022-05-30 /pmc/articles/PMC9182905/ /pubmed/35684237 http://dx.doi.org/10.3390/plants11111464 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Song, Kechen
Hu, Haiying
Xie, Yingzhong
Fu, Li
The Effect of Soil Water Deficiency on Water Use Strategies and Response Mechanisms of Glycyrrhiza uralensis Fisch
title The Effect of Soil Water Deficiency on Water Use Strategies and Response Mechanisms of Glycyrrhiza uralensis Fisch
title_full The Effect of Soil Water Deficiency on Water Use Strategies and Response Mechanisms of Glycyrrhiza uralensis Fisch
title_fullStr The Effect of Soil Water Deficiency on Water Use Strategies and Response Mechanisms of Glycyrrhiza uralensis Fisch
title_full_unstemmed The Effect of Soil Water Deficiency on Water Use Strategies and Response Mechanisms of Glycyrrhiza uralensis Fisch
title_short The Effect of Soil Water Deficiency on Water Use Strategies and Response Mechanisms of Glycyrrhiza uralensis Fisch
title_sort effect of soil water deficiency on water use strategies and response mechanisms of glycyrrhiza uralensis fisch
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182905/
https://www.ncbi.nlm.nih.gov/pubmed/35684237
http://dx.doi.org/10.3390/plants11111464
work_keys_str_mv AT songkechen theeffectofsoilwaterdeficiencyonwaterusestrategiesandresponsemechanismsofglycyrrhizauralensisfisch
AT huhaiying theeffectofsoilwaterdeficiencyonwaterusestrategiesandresponsemechanismsofglycyrrhizauralensisfisch
AT xieyingzhong theeffectofsoilwaterdeficiencyonwaterusestrategiesandresponsemechanismsofglycyrrhizauralensisfisch
AT fuli theeffectofsoilwaterdeficiencyonwaterusestrategiesandresponsemechanismsofglycyrrhizauralensisfisch
AT songkechen effectofsoilwaterdeficiencyonwaterusestrategiesandresponsemechanismsofglycyrrhizauralensisfisch
AT huhaiying effectofsoilwaterdeficiencyonwaterusestrategiesandresponsemechanismsofglycyrrhizauralensisfisch
AT xieyingzhong effectofsoilwaterdeficiencyonwaterusestrategiesandresponsemechanismsofglycyrrhizauralensisfisch
AT fuli effectofsoilwaterdeficiencyonwaterusestrategiesandresponsemechanismsofglycyrrhizauralensisfisch