Cargando…

Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites

Liquid metal (LM)–polymer composites that combine the thermal and electrical conductivity of LMs with the shape-morphing capability of polymers are attracting a great deal of attention in the fields of reconfigurable electronics and soft robotics. However, investigation of the synergetic effect betw...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Xiaobo, Chen, Guokang, Liao, Yifan, Lu, Xi, Hu, Shuangyan, Gan, Tiansheng, Handschuh-Wang, Stephan, Zhang, Xueli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182922/
https://www.ncbi.nlm.nih.gov/pubmed/35683935
http://dx.doi.org/10.3390/polym14112259
_version_ 1784724159440355328
author Deng, Xiaobo
Chen, Guokang
Liao, Yifan
Lu, Xi
Hu, Shuangyan
Gan, Tiansheng
Handschuh-Wang, Stephan
Zhang, Xueli
author_facet Deng, Xiaobo
Chen, Guokang
Liao, Yifan
Lu, Xi
Hu, Shuangyan
Gan, Tiansheng
Handschuh-Wang, Stephan
Zhang, Xueli
author_sort Deng, Xiaobo
collection PubMed
description Liquid metal (LM)–polymer composites that combine the thermal and electrical conductivity of LMs with the shape-morphing capability of polymers are attracting a great deal of attention in the fields of reconfigurable electronics and soft robotics. However, investigation of the synergetic effect between the shape-changing properties of LMs and polymer matrices is lacking. Herein, a self-healable and recyclable dual-shape memory composite, comprising an LM (gallium) and a Diels–Alder (DA) crosslinked crystalline polyurethane (PU) elastomer, is reported. The composite exhibits a bilayer structure and achieves excellent shape programming abilities, due to the phase transitions of the LM and the crystalline PU elastomers. To demonstrate these shape-morphing abilities, a heat-triggered soft gripper, which can grasp and release objects according to the environmental temperature, is designed and built. Similarly, combining the electrical conductivity and the dual-shape memory effect of the composite, a light-controlled reconfigurable switch for a circuit is produced. In addition, due to the reversible nature of DA bonds, the composite is self-healable and recyclable. Both the LM and PU elastomer are recyclable, demonstrating the extremely high recycling efficiency (up to 96.7%) of the LM, as well as similar mechanical properties between the reprocessed elastomers and the pristine ones.
format Online
Article
Text
id pubmed-9182922
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91829222022-06-10 Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites Deng, Xiaobo Chen, Guokang Liao, Yifan Lu, Xi Hu, Shuangyan Gan, Tiansheng Handschuh-Wang, Stephan Zhang, Xueli Polymers (Basel) Article Liquid metal (LM)–polymer composites that combine the thermal and electrical conductivity of LMs with the shape-morphing capability of polymers are attracting a great deal of attention in the fields of reconfigurable electronics and soft robotics. However, investigation of the synergetic effect between the shape-changing properties of LMs and polymer matrices is lacking. Herein, a self-healable and recyclable dual-shape memory composite, comprising an LM (gallium) and a Diels–Alder (DA) crosslinked crystalline polyurethane (PU) elastomer, is reported. The composite exhibits a bilayer structure and achieves excellent shape programming abilities, due to the phase transitions of the LM and the crystalline PU elastomers. To demonstrate these shape-morphing abilities, a heat-triggered soft gripper, which can grasp and release objects according to the environmental temperature, is designed and built. Similarly, combining the electrical conductivity and the dual-shape memory effect of the composite, a light-controlled reconfigurable switch for a circuit is produced. In addition, due to the reversible nature of DA bonds, the composite is self-healable and recyclable. Both the LM and PU elastomer are recyclable, demonstrating the extremely high recycling efficiency (up to 96.7%) of the LM, as well as similar mechanical properties between the reprocessed elastomers and the pristine ones. MDPI 2022-06-01 /pmc/articles/PMC9182922/ /pubmed/35683935 http://dx.doi.org/10.3390/polym14112259 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Deng, Xiaobo
Chen, Guokang
Liao, Yifan
Lu, Xi
Hu, Shuangyan
Gan, Tiansheng
Handschuh-Wang, Stephan
Zhang, Xueli
Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites
title Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites
title_full Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites
title_fullStr Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites
title_full_unstemmed Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites
title_short Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites
title_sort self-healable and recyclable dual-shape memory liquid metal–elastomer composites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182922/
https://www.ncbi.nlm.nih.gov/pubmed/35683935
http://dx.doi.org/10.3390/polym14112259
work_keys_str_mv AT dengxiaobo selfhealableandrecyclabledualshapememoryliquidmetalelastomercomposites
AT chenguokang selfhealableandrecyclabledualshapememoryliquidmetalelastomercomposites
AT liaoyifan selfhealableandrecyclabledualshapememoryliquidmetalelastomercomposites
AT luxi selfhealableandrecyclabledualshapememoryliquidmetalelastomercomposites
AT hushuangyan selfhealableandrecyclabledualshapememoryliquidmetalelastomercomposites
AT gantiansheng selfhealableandrecyclabledualshapememoryliquidmetalelastomercomposites
AT handschuhwangstephan selfhealableandrecyclabledualshapememoryliquidmetalelastomercomposites
AT zhangxueli selfhealableandrecyclabledualshapememoryliquidmetalelastomercomposites