Cargando…
Automatic Cognitive Fatigue Detection Using Wearable fNIRS and Machine Learning
Wearable sensors have increasingly been applied in healthcare to generate data and monitor patients unobtrusively. Their application for Brain–Computer Interfaces (BCI) allows for unobtrusively monitoring one’s cognitive state over time. A particular state relevant in multiple domains is cognitive f...
Autores principales: | Varandas, Rui, Lima, Rodrigo, Bermúdez I Badia, Sergi, Silva, Hugo, Gamboa, Hugo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9183003/ https://www.ncbi.nlm.nih.gov/pubmed/35684626 http://dx.doi.org/10.3390/s22114010 |
Ejemplares similares
-
Wearable, Integrated EEG–fNIRS Technologies: A Review
por: Uchitel, Julie, et al.
Publicado: (2021) -
fNIRS improves seizure detection in multimodal EEG-fNIRS recordings
por: Sirpal, Parikshat, et al.
Publicado: (2019) -
Sensitivity of fNIRS to cognitive state and load
por: Fishburn, Frank A., et al.
Publicado: (2014) -
Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks
por: Pinti, Paola, et al.
Publicado: (2015) -
Sensor Location Optimization of Wireless Wearable fNIRS System for Cognitive Workload Monitoring Using a Data-Driven Approach for Improved Wearability
por: Siddiquee, Masudur R., et al.
Publicado: (2020)