Cargando…

Controlling Morphology and Physio-Chemical Properties of Stimulus-Responsive Polyurethane Foams by Altering Chemical Blowing Agent Content

Amorphous shape memory polymer foams are currently used as components in vascular occlusion medical devices such as the IMPEDE and IMPEDE-FX Embolization Plugs. Body temperature and moisture-driven actuation of the polymeric foam is necessary for vessel occlusion and the rate of expansion is a funct...

Descripción completa

Detalles Bibliográficos
Autores principales: Hasan, Sayyeda Marziya, Touchet, Tyler, Jayadeep, Aishwarya, Maitland, Duncan J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9183079/
https://www.ncbi.nlm.nih.gov/pubmed/35683960
http://dx.doi.org/10.3390/polym14112288
Descripción
Sumario:Amorphous shape memory polymer foams are currently used as components in vascular occlusion medical devices such as the IMPEDE and IMPEDE-FX Embolization Plugs. Body temperature and moisture-driven actuation of the polymeric foam is necessary for vessel occlusion and the rate of expansion is a function of physio-chemical material properties. In this study, concentrations of the chemical blowing agent for the foam were altered and the resulting effects on morphology, thermal and chemical properties, and actuation rates were studied. Lower concentration of chemical blowing agent yielded foams with thick foam struts due to less bubble formation during the foaming process. Foams with thicker struts also had high tensile modulus and lower strain at break values compared to the foams made with higher blowing agent concentration. Additionally, less blowing agent resulted in foams with a lower glass transition temperature due to less urea formation during the foaming reaction. This exploratory study provides an approach to control thermo-mechanical foam properties and morphology by tuning concentrations of a foaming additive. This work aims to broaden the applications of shape memory polymer foams for medical use.