Cargando…

Accurate Step Count with Generalized and Personalized Deep Learning on Accelerometer Data †

Physical activity (PA) is globally recognized as a pillar of general health. Step count, as one measure of PA, is a well known predictor of long-term morbidity and mortality. Despite its popularity in consumer devices, a lack of methodological standards and clinical validation remains a major impedi...

Descripción completa

Detalles Bibliográficos
Autores principales: Luu, Long, Pillai, Arvind, Lea, Halsey, Buendia, Ruben, Khan, Faisal M., Dennis, Glynn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9183122/
https://www.ncbi.nlm.nih.gov/pubmed/35684609
http://dx.doi.org/10.3390/s22113989
Descripción
Sumario:Physical activity (PA) is globally recognized as a pillar of general health. Step count, as one measure of PA, is a well known predictor of long-term morbidity and mortality. Despite its popularity in consumer devices, a lack of methodological standards and clinical validation remains a major impediment to step count being accepted as a valid clinical endpoint. Previous works have mainly focused on device-specific step-count algorithms and often employ sensor modalities that may not be widely available. This may limit step-count suitability in clinical scenarios. In this paper, we trained neural network models on publicly available data and tested on an independent cohort using two approaches: generalization and personalization. Specifically, we trained neural networks on accelerometer signals from one device and either directly applied them or adapted them individually to accelerometer data obtained from a separate subject cohort wearing multiple distinct devices. The best models exhibited highly accurate step-count estimates for both the generalization (96–99%) and personalization (98–99%) approaches. The results demonstrate that it is possible to develop device-agnostic, accelerometer-only algorithms that provide highly accurate step counts, positioning step count as a reliable mobility endpoint and a strong candidate for clinical validation.