Cargando…
Improved Feature-Based Gaze Estimation Using Self-Attention Module and Synthetic Eye Images
Gaze is an excellent indicator and has utility in that it can express interest or intention and the condition of an object. Recent deep-learning methods are mainly appearance-based methods that estimate gaze based on a simple regression from entire face and eye images. However, sometimes, this metho...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9183137/ https://www.ncbi.nlm.nih.gov/pubmed/35684647 http://dx.doi.org/10.3390/s22114026 |
Sumario: | Gaze is an excellent indicator and has utility in that it can express interest or intention and the condition of an object. Recent deep-learning methods are mainly appearance-based methods that estimate gaze based on a simple regression from entire face and eye images. However, sometimes, this method does not give satisfactory results for gaze estimations in low-resolution and noisy images obtained in unconstrained real-world settings (e.g., places with severe lighting changes). In this study, we propose a method that estimates gaze by detecting eye region landmarks through a single eye image; and this approach is shown to be competitive with recent appearance-based methods. Our approach acquires rich information by extracting more landmarks and including iris and eye edges, similar to the existing feature-based methods. To acquire strong features even at low resolutions, we used the HRNet backbone network to learn representations of images at various resolutions. Furthermore, we used the self-attention module CBAM to obtain a refined feature map with better spatial information, which enhanced the robustness to noisy inputs, thereby yielding a performance of a 3.18% landmark localization error, a 4% improvement over the existing error and A large number of landmarks were acquired and used as inputs for a lightweight neural network to estimate the gaze. We conducted a within-datasets evaluation on the MPIIGaze, which was obtained in a natural environment and achieved a state-of-the-art performance of 4.32 degrees, a 6% improvement over the existing performance. |
---|