Cargando…
A Path-Planning Approach Based on Potential and Dynamic Q-Learning for Mobile Robots in Unknown Environment
The path-planning approach plays an important role in determining how long the mobile robots can travel. To solve the path-planning problem of mobile robots in an unknown environment, a potential and dynamic Q-learning (PDQL) approach is proposed, which combines Q-learning with the artificial potent...
Autores principales: | Hao, Bing, Du, He, Zhao, Jianshuo, Zhang, Jiamin, Wang, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184183/ https://www.ncbi.nlm.nih.gov/pubmed/35694567 http://dx.doi.org/10.1155/2022/2540546 |
Ejemplares similares
-
A path planning approach for mobile robots using short and safe Q-learning
por: Du, He, et al.
Publicado: (2022) -
A search and rescue robot search method based on flower pollination algorithm and Q-learning fusion algorithm
por: Hao, Bing, et al.
Publicado: (2023) -
Path planning and optimization for micro-robot in a vessel-mimic environment
por: Huan, Zhijie, et al.
Publicado: (2022) -
Mobile Robot Path Planning Based on Time Taboo Ant Colony Optimization in Dynamic Environment
por: Xiong, Ni, et al.
Publicado: (2021) -
SLP-Improved DDPG Path-Planning Algorithm for Mobile Robot in Large-Scale Dynamic Environment
por: Chen, Yinliang, et al.
Publicado: (2023)