Cargando…

Feature Matching Optimization of Multimedia Remote Sensing Images Based on Multiscale Edge Extraction

In order to solve the problem of low efficiency of image feature matching in traditional remote sensing image database, this paper proposes the feature matching optimization of multimedia remote sensing images based on multiscale edge extraction, expounds the basic theory of multiscale edge, and the...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yani, Dong, Jinfang, Wang, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184184/
https://www.ncbi.nlm.nih.gov/pubmed/35694579
http://dx.doi.org/10.1155/2022/1764507
Descripción
Sumario:In order to solve the problem of low efficiency of image feature matching in traditional remote sensing image database, this paper proposes the feature matching optimization of multimedia remote sensing images based on multiscale edge extraction, expounds the basic theory of multiscale edge, and then registers multimedia remote sensing images based on the selection of optimal control points. In this paper, 100 remote sensing images with a size of 3619∗825 with a resolution of 30 m are selected as experimental data. The computer is configured with 2.9 ghz CPU, 16 g memory, and i7 processor. The research mainly includes two parts: image matching efficiency analysis of multiscale model; matching accuracy analysis of multiscale model and formulation of model parameters. The results show that when the amount of image data is large, feature matching takes more time. With the increase of sampling rate, the amount of image data decreases rapidly, and the feature matching time also shortens rapidly, which provides a theoretical basis for the multiscale model to improve the matching efficiency. The data size is the same, 3619 × 1825, which makes the matching time between images have little difference. Therefore, the matching time increases linearly with the increase of the number of images in the database. When the amount of image data in the database is large, a higher number of layers should be used; when the amount of image data in the database is small, the number of layers of the model should be reduced to ensure the accuracy of matching. The availability of the proposed method is proved.