Cargando…

Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model

BACKGROUND: The loss of muscle mass in rheumatoid arthritis (RA), termed rheumatoid cachexia, is predicted to result from the complex interactions between different cell types involved in the maintenance of skeletal muscle mass, namely, myoblasts, fibroblasts, and macrophages. The complexity within...

Descripción completa

Detalles Bibliográficos
Autores principales: Ollewagen, Tracey, Tarr, Gareth S., Myburgh, Kathryn H., Reuter, Helmuth, Smith, Carine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184217/
https://www.ncbi.nlm.nih.gov/pubmed/35693848
http://dx.doi.org/10.1155/2022/1524913
_version_ 1784724463771713536
author Ollewagen, Tracey
Tarr, Gareth S.
Myburgh, Kathryn H.
Reuter, Helmuth
Smith, Carine
author_facet Ollewagen, Tracey
Tarr, Gareth S.
Myburgh, Kathryn H.
Reuter, Helmuth
Smith, Carine
author_sort Ollewagen, Tracey
collection PubMed
description BACKGROUND: The loss of muscle mass in rheumatoid arthritis (RA), termed rheumatoid cachexia, is predicted to result from the complex interactions between different cell types involved in the maintenance of skeletal muscle mass, namely, myoblasts, fibroblasts, and macrophages. The complexity within the muscle is further highlighted by the incidence of nonresponsiveness to current RA treatment strategies. METHOD: This study aimed at determining differences in the cellular responses in a novel human primary cell triple coculture model exposed to serum collected from nonarthritic controls (NC), RA treatment naïve (RATN), and RA treatment-nonresponding (RATNR) patients. Bone morphogenetic protein-7 (BMP-7) was investigated as a treatment option. RESULTS: Plasma analysis indicated that samples were indeed representative of healthy and RA patients—notably, the RATNR patients additionally exhibited dysregulated IL-6/IL-10 correlations. Coculture exposure to serum from RATNR patients demonstrated increased cellular growth (p < 0.001), while both hepatocyte growth factor (p < 0.01) and follistatin (p < 0.001) were reduced when compared to NC. Furthermore, decreased concentration of markers of extracellular matrix formation, transforming growth factor-β (TGF-β; p < 0.05) and fibronectin (p < 0.001), but increased collagen IV (p < 0.01) was observed following RATNR serum exposure. Under healthy conditions, BMP-7 exhibited potentially beneficial results in reducing fibrosis-generating TGF-β (p < 0.05) and fibronectin (p < 0.05). BMP-7 further exhibited protective potential in the RA groups through reversing the aberrant tendencies observed especially in the RATNR serum-exposed group. CONCLUSION: Exposure of the triple coculture to RATN and RATNR serum resulted in dysregulated myoblast proliferation and growth, and ECM impairment, which was reversed by BMP-7 treatment.
format Online
Article
Text
id pubmed-9184217
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-91842172022-06-10 Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model Ollewagen, Tracey Tarr, Gareth S. Myburgh, Kathryn H. Reuter, Helmuth Smith, Carine Int J Inflam Research Article BACKGROUND: The loss of muscle mass in rheumatoid arthritis (RA), termed rheumatoid cachexia, is predicted to result from the complex interactions between different cell types involved in the maintenance of skeletal muscle mass, namely, myoblasts, fibroblasts, and macrophages. The complexity within the muscle is further highlighted by the incidence of nonresponsiveness to current RA treatment strategies. METHOD: This study aimed at determining differences in the cellular responses in a novel human primary cell triple coculture model exposed to serum collected from nonarthritic controls (NC), RA treatment naïve (RATN), and RA treatment-nonresponding (RATNR) patients. Bone morphogenetic protein-7 (BMP-7) was investigated as a treatment option. RESULTS: Plasma analysis indicated that samples were indeed representative of healthy and RA patients—notably, the RATNR patients additionally exhibited dysregulated IL-6/IL-10 correlations. Coculture exposure to serum from RATNR patients demonstrated increased cellular growth (p < 0.001), while both hepatocyte growth factor (p < 0.01) and follistatin (p < 0.001) were reduced when compared to NC. Furthermore, decreased concentration of markers of extracellular matrix formation, transforming growth factor-β (TGF-β; p < 0.05) and fibronectin (p < 0.001), but increased collagen IV (p < 0.01) was observed following RATNR serum exposure. Under healthy conditions, BMP-7 exhibited potentially beneficial results in reducing fibrosis-generating TGF-β (p < 0.05) and fibronectin (p < 0.05). BMP-7 further exhibited protective potential in the RA groups through reversing the aberrant tendencies observed especially in the RATNR serum-exposed group. CONCLUSION: Exposure of the triple coculture to RATN and RATNR serum resulted in dysregulated myoblast proliferation and growth, and ECM impairment, which was reversed by BMP-7 treatment. Hindawi 2022-06-02 /pmc/articles/PMC9184217/ /pubmed/35693848 http://dx.doi.org/10.1155/2022/1524913 Text en Copyright © 2022 Tracey Ollewagen et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Ollewagen, Tracey
Tarr, Gareth S.
Myburgh, Kathryn H.
Reuter, Helmuth
Smith, Carine
Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model
title Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model
title_full Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model
title_fullStr Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model
title_full_unstemmed Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model
title_short Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model
title_sort therapeutic benefit in rheumatoid cachexia illustrated using a novel primary human triple cell coculture model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184217/
https://www.ncbi.nlm.nih.gov/pubmed/35693848
http://dx.doi.org/10.1155/2022/1524913
work_keys_str_mv AT ollewagentracey therapeuticbenefitinrheumatoidcachexiaillustratedusinganovelprimaryhumantriplecellcoculturemodel
AT tarrgareths therapeuticbenefitinrheumatoidcachexiaillustratedusinganovelprimaryhumantriplecellcoculturemodel
AT myburghkathrynh therapeuticbenefitinrheumatoidcachexiaillustratedusinganovelprimaryhumantriplecellcoculturemodel
AT reuterhelmuth therapeuticbenefitinrheumatoidcachexiaillustratedusinganovelprimaryhumantriplecellcoculturemodel
AT smithcarine therapeuticbenefitinrheumatoidcachexiaillustratedusinganovelprimaryhumantriplecellcoculturemodel