Cargando…

Studies on the inhibition of methanogenesis and dechlorination by (4-hydroxyphenyl) chloromethanesulfonate

The purpose of this study was to demonstrate the inhibitory effect of chemicals on methane emissions in paddy soil. We found that (4-hydroxyphenyl) chloromethanesulfonate (C-1) has a methanogenic inhibition activity, and we studied its inhibition mechanism using laboratory tests. The study found tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Hotta, Yudai, Yagoshi, Chizu, Okazaki, Ryo, Ikeda, Mitsumasa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pesticide Science Society of Japan 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184246/
https://www.ncbi.nlm.nih.gov/pubmed/35800391
http://dx.doi.org/10.1584/jpestics.D21-071
Descripción
Sumario:The purpose of this study was to demonstrate the inhibitory effect of chemicals on methane emissions in paddy soil. We found that (4-hydroxyphenyl) chloromethanesulfonate (C-1) has a methanogenic inhibition activity, and we studied its inhibition mechanism using laboratory tests. The study found that C-1 treatment of flooded soil did not significantly affect the bacterial community but rather the archaeal community; particularly, Methanosarcina spp. C-1 strongly inhibited the aceticlastic methanogenesis route. It was suggested that the inhibitory target of C-1 was different from the well-known methanogenic inhibitor 2-bromoethanesulfonate, which targets methyl-coenzyme M reductase of methanogen. In addition, C-1 had a secondary effect of inhibiting the dechlorination of chlorophenols. Although field trials are required as the next development step, C-1 can be used to reduce methane emissions from paddy fields, one of the largest sources in the agricultural sector.