Cargando…
Allicin protects against renal ischemia–reperfusion injury by attenuating oxidative stress and apoptosis
BACKGROUND: Studies have demonstrated that allicin may play critical roles in the procession of ischemia–reperfusion(I/R) injury. The purpose of this study was to investigate the protective effects of allicin on renal I/R injury by attenuating oxidative stress and apoptosis. METHODS: To establish a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184421/ https://www.ncbi.nlm.nih.gov/pubmed/34825305 http://dx.doi.org/10.1007/s11255-021-03014-2 |
Sumario: | BACKGROUND: Studies have demonstrated that allicin may play critical roles in the procession of ischemia–reperfusion(I/R) injury. The purpose of this study was to investigate the protective effects of allicin on renal I/R injury by attenuating oxidative stress and apoptosis. METHODS: To establish a model of renal I/R, the right kidney underwent 12 h reperfusion after 45 min ischemia, allicin was administered intraperitoneally at concentrations of 40, 50 or 60 mg/kg. NRK-52E cells were treated with allicin at concentrations of 1, 3 or 5 μM in 24 h hypoxia/ 6 h reoxygenation(H/R) treatments. Indicators of HE, oxidative stress, apoptosis were measured to evaluate the effect of aliicin on renal I/R injury. RESULTS: Allicin protected renal I/R injury by ameliorating histological injury and decreasing the oxidative stress in renal tissues. Meanwhile, allicin significantly downregulated the expression of Bax and caspase-3, upregulated the expression of Bcl-2 in I/R renal tissues and H/R treated NRK-52E cells. CONCLUSIONS: Allicin may exert anti-apoptotic and antioxidative effects to promote renal function recovery in I/R renal tissues and H/R treated NRK-52E cells. Taken together, allicin may be a potential novel therapy option for future renal injury protection. |
---|