Cargando…
Dynamic World, Near real-time global 10 m land use land cover mapping
Unlike satellite images, which are typically acquired and processed in near-real-time, global land cover products have historically been produced on an annual basis, often with substantial lag times between image processing and dataset release. We developed a new automated approach for globally cons...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184477/ http://dx.doi.org/10.1038/s41597-022-01307-4 |
Sumario: | Unlike satellite images, which are typically acquired and processed in near-real-time, global land cover products have historically been produced on an annual basis, often with substantial lag times between image processing and dataset release. We developed a new automated approach for globally consistent, high resolution, near real-time (NRT) land use land cover (LULC) classification leveraging deep learning on 10 m Sentinel-2 imagery. We utilize a highly scalable cloud-based system to apply this approach and provide an open, continuous feed of LULC predictions in parallel with Sentinel-2 acquisitions. This first-of-its-kind NRT product, which we collectively refer to as Dynamic World, accommodates a variety of user needs ranging from extremely up-to-date LULC data to custom global composites representing user-specified date ranges. Furthermore, the continuous nature of the product’s outputs enables refinement, extension, and even redefinition of the LULC classification. In combination, these unique attributes enable unprecedented flexibility for a diverse community of users across a variety of disciplines. |
---|