Cargando…
Auto-generating databases of Yield Strength and Grain Size using ChemDataExtractor
The emerging field of material-based data science requires information-rich databases to generate useful results which are currently sparse in the stress engineering domain. To this end, this study uses the’materials-aware’ text-mining toolkit, ChemDataExtractor, to auto-generate databases of yield-...
Autores principales: | Kumar, Pankaj, Kabra, Saurabh, Cole, Jacqueline M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184532/ http://dx.doi.org/10.1038/s41597-022-01301-w |
Ejemplares similares
-
A database of battery materials auto-generated using ChemDataExtractor
por: Huang, Shu, et al.
Publicado: (2020) -
Auto-generated database of semiconductor band gaps using ChemDataExtractor
por: Dong, Qingyang, et al.
Publicado: (2022) -
A database of refractive indices and dielectric constants auto-generated using ChemDataExtractor
por: Zhao, Jiuyang, et al.
Publicado: (2022) -
A thermoelectric materials database auto-generated from the scientific literature using ChemDataExtractor
por: Sierepeklis, Odysseas, et al.
Publicado: (2022) -
Perovskite- and Dye-Sensitized Solar-Cell Device Databases Auto-generated Using ChemDataExtractor
por: Beard, Edward J., et al.
Publicado: (2022)