Cargando…

Comparison of the extractability of organophosphorus flame retardants in landfill media using organic and green solvents

Organic solvents are mainly used in the extraction of organophosphorus flame retardants (OPFRs) because of their availability and having been tested as good extracting solvents for most environmental pollutants. However, organic solvents are toxic, flammable, and costly. Hence, there is an ongoing q...

Descripción completa

Detalles Bibliográficos
Autores principales: Sibiya, Innocentia Velaphi, Okonkwo, Okechukwu Jonathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184578/
https://www.ncbi.nlm.nih.gov/pubmed/35680955
http://dx.doi.org/10.1038/s41598-022-13704-1
Descripción
Sumario:Organic solvents are mainly used in the extraction of organophosphorus flame retardants (OPFRs) because of their availability and having been tested as good extracting solvents for most environmental pollutants. However, organic solvents are toxic, flammable, and costly. Hence, there is an ongoing quest for less hazardous chemicals such as green deep eutectic solvents (DES) that are cheap, recyclable, non-toxic and degradable in the environment, which can be used to extract organic pollutants such as OPFRs in environmental samples. This study assessed the extractability of OPFRs in municipal landfill leachate and sediment, using organic solvents and DES. Of the fourteen targeted OPFRs, 11 (80%) and 7 (50%) were detected in the leachate and sediment samples, using hexane; whereas 14 (100%) and 13 (90%) OPFRs were detected in the same order of samples using DES. The concentrations of OPFRs obtained for the leachate using optimum organic and DES ranged from below the limit of quantification (< LOQ)—516 ± 8.10 ng/L and < LOQ—453 ± 8.10 ng/L respectively. Correspondingly, the concentrations of OPFRs in sediment samples ranged from < LOQ—135 ± 2.89 ng/g dw and < LOQ—395 ± 2.24 ng/g dw, respectively. The results from this study, therefore, highlight the potential of DES to extract more OPFR from complex matrices such as landfill leachate and sediment. This finding infers that green hydrophilic DES can serve as good replacement for organic solvents such as hexane in liquid–liquid extraction (LLE) and solid–liquid extraction (SLE) techniques for landfill leachate and sediment.