Cargando…
Explainable machine learning for precise fatigue crack tip detection
Data-driven models based on deep learning have led to tremendous breakthroughs in classical computer vision tasks and have recently made their way into natural sciences. However, the absence of domain knowledge in their inherent design significantly hinders the understanding and acceptance of these...
Autores principales: | Melching, David, Strohmann, Tobias, Requena, Guillermo, Breitbarth, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184622/ https://www.ncbi.nlm.nih.gov/pubmed/35680941 http://dx.doi.org/10.1038/s41598-022-13275-1 |
Ejemplares similares
-
Damage Mechanisms and Anisotropy of an AA7010-T7452 Open-Die Forged Alloy: Fatigue Crack Propagation
por: Strohmann, Tobias, et al.
Publicado: (2022) -
Semantic segmentation of synchrotron tomography of multiphase Al-Si alloys using a convolutional neural network with a pixel-wise weighted loss function
por: Strohmann, Tobias, et al.
Publicado: (2019) -
Tough and fatigue-resistant polymer networks by crack tip softening
por: Liu, Binhong, et al.
Publicado: (2023) -
Investigation of Plasticity Effects on Growing Fatigue Cracks Using the CJP Model of Crack Tip Fields
por: Vasco-Olmo, José Manuel, et al.
Publicado: (2023) -
Effect of the Crack Tip Bifurcation on the Plasticity-Induced Fatigue Propagation in Metallic Materials
por: Toribio, Jesús, et al.
Publicado: (2021)