Cargando…
A new generative adversarial network for medical images super resolution
For medical image analysis, there is always an immense need for rich details in an image. Typically, the diagnosis will be served best if the fine details in the image are retained and the image is available in high resolution. In medical imaging, acquiring high-resolution images is challenging and...
Autores principales: | Ahmad, Waqar, Ali, Hazrat, Shah, Zubair, Azmat, Shoaib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184641/ https://www.ncbi.nlm.nih.gov/pubmed/35680968 http://dx.doi.org/10.1038/s41598-022-13658-4 |
Ejemplares similares
-
Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review
por: Ali, Hazrat, et al.
Publicado: (2022) -
Improving Image Super-Resolution Based on Multiscale Generative Adversarial Networks
por: Yuan, Cao, et al.
Publicado: (2022) -
Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
por: Huang, Chi-En, et al.
Publicado: (2021) -
The role of generative adversarial networks in brain MRI: a scoping review
por: Ali, Hazrat, et al.
Publicado: (2022) -
Correction: The role of generative adversarial networks in brain MRI: a scoping review
por: Ali, Hazrat, et al.
Publicado: (2022)