Cargando…
TMT-based quantitative proteomics reveals protein biomarkers from cultured Pacific abalone (Haliotis discus hannai) in different regions
Due to latitude, the growth cycle of abalone in southern China is significantly lower than that in the northern regions. Therefore, it often occurs merchants use southern abalone to disguise as northern abalone. This study aims to explore the differences in the muscle proteome of Pacific abalone (Ha...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184861/ https://www.ncbi.nlm.nih.gov/pubmed/35693453 http://dx.doi.org/10.1016/j.fochx.2022.100355 |
Sumario: | Due to latitude, the growth cycle of abalone in southern China is significantly lower than that in the northern regions. Therefore, it often occurs merchants use southern abalone to disguise as northern abalone. This study aims to explore the differences in the muscle proteome of Pacific abalone (Haliotis discus hannai) in different regions. A total of 1,569 proteins were detected and 729 proteins were identified as differential abundance proteins (DAPs) in Haliotis discus hannai cultured in Northern (Liaoning Province) and Southern (Fujian Province) China. Bioinformatics analysis revealed and Western blot verified that fatty acid synthase, troponin I, calpain small subunit 1, and myosin light chain 6 are candidate biomarkers for abalone cultured in different regions. This study provides a deeper understanding of how to distinguish which region abalone is harvested from to improve abalone quality controls, and prevent food fraud. |
---|