Cargando…

Labeled entities from social media data related to avian influenza disease

This dataset is composed by spatial (e.g. location) and thematic (e.g. diseases, symptoms, virus) entities concerning avian influenza in social media (textual) data in English. It was created from three corpora: the first one includes 10 transcriptions of YouTube videos and 70 tweets manually annota...

Descripción completa

Detalles Bibliográficos
Autores principales: Schaeffer, Camille, Interdonato, Roberto, Lancelot, Renaud, Roche, Mathieu, Teisseire, Maguelonne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184875/
https://www.ncbi.nlm.nih.gov/pubmed/35692611
http://dx.doi.org/10.1016/j.dib.2022.108317
Descripción
Sumario:This dataset is composed by spatial (e.g. location) and thematic (e.g. diseases, symptoms, virus) entities concerning avian influenza in social media (textual) data in English. It was created from three corpora: the first one includes 10 transcriptions of YouTube videos and 70 tweets manually annotated. The second corpus is composed by the same textual data but automatically annotated with Named Entity Recognition (NER) tools. These two corpora have been built to evaluate NER tools and apply them to a bigger corpus. The third corpus is composed of 100 YouTube transcriptions automatically annotated with NER tools. The aim of the annotation task is to recognize spatial information such as the names of the cities and epidemiological information such as the names of the diseases. An annotation guideline is provided in order to ensure a unified annotation and to help the annotators. This dataset can be used to train or evaluate Natural Language Processing (NLP) approaches such as specialized entity recognition.