Cargando…

Prediction of the effects of the top 10 nonsynonymous variants from 30229 SARS-CoV-2 strains on their proteins

Background: SARS-CoV-2 virus is a highly transmissible pathogen that causes COVID-19. The outbreak originated in Wuhan, China in December 2019. A number of nonsynonymous mutations located at different SARS-CoV-2 proteins have been reported by multiple studies. However, there are limited computationa...

Descripción completa

Detalles Bibliográficos
Autores principales: Sia, Boon Zhan, Boon, Wan Xin, Yap, Yoke Yee, Kumar, Shalini, Ng, Chong Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184924/
https://www.ncbi.nlm.nih.gov/pubmed/35707000
http://dx.doi.org/10.12688/f1000research.72904.2
_version_ 1784724629663776768
author Sia, Boon Zhan
Boon, Wan Xin
Yap, Yoke Yee
Kumar, Shalini
Ng, Chong Han
author_facet Sia, Boon Zhan
Boon, Wan Xin
Yap, Yoke Yee
Kumar, Shalini
Ng, Chong Han
author_sort Sia, Boon Zhan
collection PubMed
description Background: SARS-CoV-2 virus is a highly transmissible pathogen that causes COVID-19. The outbreak originated in Wuhan, China in December 2019. A number of nonsynonymous mutations located at different SARS-CoV-2 proteins have been reported by multiple studies. However, there are limited computational studies on the biological impacts of these mutations on the structure and function of the proteins.   Methods: In our study nonsynonymous mutations of the SARS-CoV-2 genome and their frequencies were identified from 30,229 sequences. Subsequently, the effects of the top 10 highest frequency nonsynonymous mutations of different SARS-CoV-2 proteins were analyzed using bioinformatics tools including co-mutation analysis, prediction of the protein structure stability and flexibility analysis, and prediction of the protein functions.   Results: A total of 231 nonsynonymous mutations were identified from 30,229 SARS-CoV-2 genome sequences. The top 10 nonsynonymous mutations affecting nine amino acid residues were ORF1a nsp5 P108S, ORF1b nsp12 P323L and A423V, S protein N501Y and D614G, ORF3a Q57H, N protein P151L, R203K and G204R. Many nonsynonymous mutations showed a high concurrence ratio, suggesting these mutations may evolve together and interact functionally. Our result showed that ORF1a nsp5 P108S, ORF3a Q57H and N protein P151L mutations may be deleterious to the function of SARS-CoV-2 proteins. In addition, ORF1a nsp5 P108S and S protein D614G may destabilize the protein structures while S protein D614G may have a more open conformation compared to the wild type.   Conclusion: The biological consequences of these nonsynonymous mutations of SARS-CoV-2 proteins should be further validated by in vivo and in vitro experimental studies in the future.
format Online
Article
Text
id pubmed-9184924
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher F1000 Research Limited
record_format MEDLINE/PubMed
spelling pubmed-91849242022-06-14 Prediction of the effects of the top 10 nonsynonymous variants from 30229 SARS-CoV-2 strains on their proteins Sia, Boon Zhan Boon, Wan Xin Yap, Yoke Yee Kumar, Shalini Ng, Chong Han F1000Res Research Article Background: SARS-CoV-2 virus is a highly transmissible pathogen that causes COVID-19. The outbreak originated in Wuhan, China in December 2019. A number of nonsynonymous mutations located at different SARS-CoV-2 proteins have been reported by multiple studies. However, there are limited computational studies on the biological impacts of these mutations on the structure and function of the proteins.   Methods: In our study nonsynonymous mutations of the SARS-CoV-2 genome and their frequencies were identified from 30,229 sequences. Subsequently, the effects of the top 10 highest frequency nonsynonymous mutations of different SARS-CoV-2 proteins were analyzed using bioinformatics tools including co-mutation analysis, prediction of the protein structure stability and flexibility analysis, and prediction of the protein functions.   Results: A total of 231 nonsynonymous mutations were identified from 30,229 SARS-CoV-2 genome sequences. The top 10 nonsynonymous mutations affecting nine amino acid residues were ORF1a nsp5 P108S, ORF1b nsp12 P323L and A423V, S protein N501Y and D614G, ORF3a Q57H, N protein P151L, R203K and G204R. Many nonsynonymous mutations showed a high concurrence ratio, suggesting these mutations may evolve together and interact functionally. Our result showed that ORF1a nsp5 P108S, ORF3a Q57H and N protein P151L mutations may be deleterious to the function of SARS-CoV-2 proteins. In addition, ORF1a nsp5 P108S and S protein D614G may destabilize the protein structures while S protein D614G may have a more open conformation compared to the wild type.   Conclusion: The biological consequences of these nonsynonymous mutations of SARS-CoV-2 proteins should be further validated by in vivo and in vitro experimental studies in the future. F1000 Research Limited 2022-05-18 /pmc/articles/PMC9184924/ /pubmed/35707000 http://dx.doi.org/10.12688/f1000research.72904.2 Text en Copyright: © 2022 Sia BZ et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Sia, Boon Zhan
Boon, Wan Xin
Yap, Yoke Yee
Kumar, Shalini
Ng, Chong Han
Prediction of the effects of the top 10 nonsynonymous variants from 30229 SARS-CoV-2 strains on their proteins
title Prediction of the effects of the top 10 nonsynonymous variants from 30229 SARS-CoV-2 strains on their proteins
title_full Prediction of the effects of the top 10 nonsynonymous variants from 30229 SARS-CoV-2 strains on their proteins
title_fullStr Prediction of the effects of the top 10 nonsynonymous variants from 30229 SARS-CoV-2 strains on their proteins
title_full_unstemmed Prediction of the effects of the top 10 nonsynonymous variants from 30229 SARS-CoV-2 strains on their proteins
title_short Prediction of the effects of the top 10 nonsynonymous variants from 30229 SARS-CoV-2 strains on their proteins
title_sort prediction of the effects of the top 10 nonsynonymous variants from 30229 sars-cov-2 strains on their proteins
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184924/
https://www.ncbi.nlm.nih.gov/pubmed/35707000
http://dx.doi.org/10.12688/f1000research.72904.2
work_keys_str_mv AT siaboonzhan predictionoftheeffectsofthetop10nonsynonymousvariantsfrom30229sarscov2strainsontheirproteins
AT boonwanxin predictionoftheeffectsofthetop10nonsynonymousvariantsfrom30229sarscov2strainsontheirproteins
AT yapyokeyee predictionoftheeffectsofthetop10nonsynonymousvariantsfrom30229sarscov2strainsontheirproteins
AT kumarshalini predictionoftheeffectsofthetop10nonsynonymousvariantsfrom30229sarscov2strainsontheirproteins
AT ngchonghan predictionoftheeffectsofthetop10nonsynonymousvariantsfrom30229sarscov2strainsontheirproteins