Cargando…
Not All Electrode Channels Are Needed: Knowledge Transfer From Only Stimulated Brain Regions for EEG Emotion Recognition
Emotion recognition from affective brain-computer interfaces (aBCI) has garnered a lot of attention in human-computer interactions. Electroencephalographic (EEG) signals collected and stored in one database have been mostly used due to their ability to detect brain activities in real time and their...
Autores principales: | Perry Fordson, Hayford, Xing, Xiaofen, Guo, Kailing, Xu, Xiangmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185168/ https://www.ncbi.nlm.nih.gov/pubmed/35692430 http://dx.doi.org/10.3389/fnins.2022.865201 |
Ejemplares similares
-
Emotion Recognition With Knowledge Graph Based on Electrodermal Activity
por: Perry Fordson, Hayford, et al.
Publicado: (2022) -
SAE+LSTM: A New Framework for Emotion Recognition From Multi-Channel EEG
por: Xing, Xiaofen, et al.
Publicado: (2019) -
Hybrid transfer learning strategy for cross-subject EEG emotion recognition
por: Lu, Wei, et al.
Publicado: (2023) -
Emotion Recognition Using a Novel Granger Causality Quantifier and Combined Electrodes of EEG
por: Goshvarpour, Atefeh, et al.
Publicado: (2023) -
Emotion recognition based on EEG features in movie clips with channel selection
por: Özerdem, Mehmet Siraç, et al.
Publicado: (2017)