Cargando…
Intelligent Task Dispatching and Scheduling Using a Deep Q-Network in a Cluster Edge Computing System
Recently, intelligent IoT applications based on artificial intelligence (AI) have been deployed with mobile edge computing (MEC). Intelligent IoT applications demand more computing resources and lower service latencies for AI tasks in dynamic MEC environments. Thus, in this paper, considering the re...
Autores principales: | Youn, Joosang, Han, Youn-Hee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185231/ https://www.ncbi.nlm.nih.gov/pubmed/35684719 http://dx.doi.org/10.3390/s22114098 |
Ejemplares similares
-
Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing
por: Sheng, Shuran, et al.
Publicado: (2021) -
Software-Defined Optimal Computation Task Scheduling in Vehicular Edge Networking †
por: Li, Zhiyuan, et al.
Publicado: (2021) -
Recent Advances in Collaborative Scheduling of Computing Tasks in an Edge Computing Paradigm
por: Chen, Shichao, et al.
Publicado: (2021) -
QoS-Aware Joint Task Scheduling and Resource Allocation in Vehicular Edge Computing
por: Cao, Chenhong, et al.
Publicado: (2022) -
A Novel Approach to the Job Shop Scheduling Problem Based on the Deep Q-Network in a Cooperative Multi-Access Edge Computing Ecosystem †
por: Moon, Junhyung, et al.
Publicado: (2021)