Cargando…
Adaptive Contrastive Learning with Label Consistency for Source Data Free Unsupervised Domain Adaptation
Unsupervised domain adaptation, which aims to alleviate the domain shift between source domain and target domain, has attracted extensive research interest; however, this is unlikely in practical application scenarios, which may be due to privacy issues and intellectual rights. In this paper, we dis...
Autores principales: | Zhao, Xuejun, Stanislawski, Rafal, Gardoni, Paolo, Sulowicz, Maciej, Glowacz, Adam, Krolczyk, Grzegorz, Li, Zhixiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185254/ https://www.ncbi.nlm.nih.gov/pubmed/35684857 http://dx.doi.org/10.3390/s22114238 |
Ejemplares similares
-
Damage Detection for Conveyor Belt Surface Based on Conditional Cycle Generative Adversarial Network
por: Guo, Xiaoqiang, et al.
Publicado: (2022) -
A New Deep Model for Detecting Multiple Moving Targets in Real Traffic Scenarios: Machine Vision-Based Vehicles
por: Xu, Xiaowei, et al.
Publicado: (2022) -
A New Kinect V2-Based Method for Visual Recognition and Grasping of a Yarn-Bobbin-Handling Robot
por: Han, Jinghai, et al.
Publicado: (2022) -
Unsupervised multi-source domain adaptation with no observable source data
por: Jeon, Hyunsik, et al.
Publicado: (2021) -
Belt Tear Detection for Coal Mining Conveyors
por: Guo, Xiaoqiang, et al.
Publicado: (2022)