Cargando…

Towards Convolutional Neural Network Acceleration and Compression Based on Simon k-Means

Convolutional Neural Networks (CNNs) are popular models that are widely used in image classification, target recognition, and other fields. Model compression is a common step in transplanting neural networks into embedded devices, and it is often used in the retraining stage. However, it requires a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Mingjie, Zhao, Yunping, Chen, Xiaowen, Li, Chen, Lu, Jianzhuang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185260/
https://www.ncbi.nlm.nih.gov/pubmed/35684919
http://dx.doi.org/10.3390/s22114298
Descripción
Sumario:Convolutional Neural Networks (CNNs) are popular models that are widely used in image classification, target recognition, and other fields. Model compression is a common step in transplanting neural networks into embedded devices, and it is often used in the retraining stage. However, it requires a high expenditure of time by retraining weight data to atone for the loss of precision. Unlike in prior designs, we propose a novel model compression approach based on Simon k-means, which is specifically designed to support a hardware acceleration scheme. First, we propose an extension algorithm named Simon k-means based on simple k-means. We use Simon k-means to cluster trained weights in convolutional layers and fully connected layers. Second, we reduce the consumption of hardware resources in data movement and storage by using a data storage and index approach. Finally, we provide the hardware implementation of the compressed CNN accelerator. Our evaluations on several classifications show that our design can achieve 5.27× compression and reduce 74.3% of the multiply–accumulate (MAC) operations in AlexNet on the FASHION-MNIST dataset.