Cargando…
Towards Convolutional Neural Network Acceleration and Compression Based on Simon k-Means
Convolutional Neural Networks (CNNs) are popular models that are widely used in image classification, target recognition, and other fields. Model compression is a common step in transplanting neural networks into embedded devices, and it is often used in the retraining stage. However, it requires a...
Autores principales: | Wei, Mingjie, Zhao, Yunping, Chen, Xiaowen, Li, Chen, Lu, Jianzhuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185260/ https://www.ncbi.nlm.nih.gov/pubmed/35684919 http://dx.doi.org/10.3390/s22114298 |
Ejemplares similares
-
An Accelerator Design Using a MTCA Decomposition Algorithm for CNNs
por: Zhao, Yunping, et al.
Publicado: (2020) -
TTQR: A Traffic- and Thermal-Aware Q-Routing for 3D Network-on-Chip
por: Liu, Hanyan, et al.
Publicado: (2022) -
Wheat ear counting using K-means clustering segmentation and convolutional neural network
por: Xu, Xin, et al.
Publicado: (2020) -
Structural Compression of Convolutional Neural Networks with Applications in Interpretability
por: Abbasi-Asl, Reza, et al.
Publicado: (2021) -
Iris Image Compression Using Deep Convolutional Neural Networks
por: Jalilian, Ehsaneddin, et al.
Publicado: (2022)