Cargando…
A Novel Detection and Multi-Classification Approach for IoT-Malware Using Random Forest Voting of Fine-Tuning Convolutional Neural Networks
The Internet of Things (IoT) is prone to malware assaults due to its simple installation and autonomous operating qualities. IoT devices have become the most tempting targets of malware due to well-known vulnerabilities such as weak, guessable, or hard-coded passwords, a lack of secure update proced...
Autores principales: | Atitallah, Safa Ben, Driss, Maha, Almomani, Iman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185266/ https://www.ncbi.nlm.nih.gov/pubmed/35684922 http://dx.doi.org/10.3390/s22114302 |
Ejemplares similares
-
Transfer Learning for Image-Based Malware Detection for IoT
por: Panda, Pratyush, et al.
Publicado: (2023) -
Adversarial Samples on Android Malware Detection Systems for IoT Systems
por: Liu, Xiaolei, et al.
Publicado: (2019) -
Feature Subset Selection for Malware Detection in Smart IoT Platforms
por: Abawajy, Jemal, et al.
Publicado: (2021) -
IoT malware: An attribute-based taxonomy, detection mechanisms and challenges
por: Victor, Princy, et al.
Publicado: (2023) -
Explainable Artificial Intelligence-Based IoT Device Malware Detection Mechanism Using Image Visualization and Fine-Tuned CNN-Based Transfer Learning Model
por: Naeem, Hamad, et al.
Publicado: (2022)