Cargando…
Enhancing Precision with an Ensemble Generative Adversarial Network for Steel Surface Defect Detectors (EnsGAN-SDD)
Defects are the primary problem affecting steel product quality in the steel industry. The specific challenges in developing detect defectors involve the vagueness and tiny size of defects. To solve these problems, we propose incorporating super-resolution technique, sequential feature pyramid netwo...
Autores principales: | Akhyar, Fityanul, Furqon, Elvin Nur, Lin, Chih-Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185267/ https://www.ncbi.nlm.nih.gov/pubmed/35684877 http://dx.doi.org/10.3390/s22114257 |
Ejemplares similares
-
FDD: a deep learning–based steel defect detectors
por: Akhyar, Fityanul, et al.
Publicado: (2023) -
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017) -
Seminar: Open challenges for improving Generative Adversarial Networks (GANs)
por: Goodfellow, Ian
Publicado: (2017) -
MB-GAN: Microbiome Simulation via Generative Adversarial Network
por: Rong, Ruichen, et al.
Publicado: (2021) -
Evaluation of GAN-Based Model for Adversarial Training
por: Zhao, Weimin, et al.
Publicado: (2023)