Cargando…
Benchmarking Object Detection Deep Learning Models in Embedded Devices
Object detection is an essential capability for performing complex tasks in robotic applications. Today, deep learning (DL) approaches are the basis of state-of-the-art solutions in computer vision, where they provide very high accuracy albeit with high computational costs. Due to the physical limit...
Autores principales: | Cantero, David, Esnaola-Gonzalez, Iker, Miguel-Alonso, Jose, Jauregi, Ekaitz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185277/ https://www.ncbi.nlm.nih.gov/pubmed/35684827 http://dx.doi.org/10.3390/s22114205 |
Ejemplares similares
-
Cooktop Sensing Based on a YOLO Object Detection Algorithm
por: Azurmendi, Iker, et al.
Publicado: (2023) -
Benchmark of Deep Learning models
por: Terko, Afan
Publicado: (2021) -
Ultrasound Transmission Tomography for Detecting and Measuring Cylindrical Objects Embedded in Concrete
por: Lluveras Núñez, Dalmay, et al.
Publicado: (2017) -
Compressed Deep Learning to Classify Arrhythmia in an Embedded Wearable Device
por: Lee, Kwang-Sig, et al.
Publicado: (2022) -
Benchmarking Deep Learning Models for Tooth Structure
Segmentation
por: Schneider, L., et al.
Publicado: (2022)