Cargando…
A New Multi-Sensor Stream Data Augmentation Method for Imbalanced Learning in Complex Manufacturing Process
Multiple sensors are often mounted in a complex manufacturing process to detect failures. Due to the high reliability of modern manufacturing processes, failures only happen occasionally. Therefore, data collected in practical manufacturing processes are extremely imbalanced, which often brings abou...
Autores principales: | Xu, Dongting, Zhang, Zhisheng, Shi, Jinfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185280/ https://www.ncbi.nlm.nih.gov/pubmed/35684662 http://dx.doi.org/10.3390/s22114042 |
Ejemplares similares
-
Complex Event Processing for Sensor Stream Data
por: Bok, Kyoungsoo, et al.
Publicado: (2018) -
Application of Imbalanced Data Classification Quality Metrics as Weighting Methods of the Ensemble Data Stream Classification Algorithms
por: Wegier, Weronika, et al.
Publicado: (2020) -
Employing One-Class SVM Classifier Ensemble for Imbalanced Data Stream Classification
por: Klikowski, Jakub, et al.
Publicado: (2020) -
Optimal selection of resampling methods for imbalanced data with high complexity
por: Kim, Annie, et al.
Publicado: (2023) -
An oversampling method for multi-class imbalanced data based on composite weights
por: Deng, Mingyang, et al.
Publicado: (2021)