Cargando…
Analysis of Depth Cameras for Proximal Sensing of Grapes
This work investigates the performance of five depth cameras in relation to their potential for grape yield estimation. The technologies used by these cameras include structured light (Kinect V1), active infrared stereoscopy (RealSense D415), time of flight (Kinect V2 and Kinect Azure), and LiDAR (I...
Autores principales: | Parr, Baden, Legg, Mathew, Alam, Fakhrul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185296/ https://www.ncbi.nlm.nih.gov/pubmed/35684799 http://dx.doi.org/10.3390/s22114179 |
Ejemplares similares
-
Occluded Grape Cluster Detection and Vine Canopy Visualisation Using an Ultrasonic Phased Array
por: Parr, Baden, et al.
Publicado: (2021) -
Autonomous Fingerprinting and Large Experimental Data Set for Visible Light Positioning
por: Glass, Tyrel, et al.
Publicado: (2021) -
Non-Destructive Optical Monitoring of Grape Maturation by Proximal Sensing
por: Ben Ghozlen, Naïma, et al.
Publicado: (2010) -
Miniaturized 3D Depth Sensing-Based Smartphone Light Field Camera
por: Kim, Hyun Myung, et al.
Publicado: (2020) -
Sensing Range Extension for Short-Baseline Stereo Camera Using Monocular Depth Estimation
por: Seo, Beom-Su, et al.
Publicado: (2022)