Cargando…
Deep Learning Regression Approaches Applied to Estimate Tillering in Tropical Forages Using Mobile Phone Images
We assessed the performance of Convolutional Neural Network (CNN)-based approaches using mobile phone images to estimate regrowth density in tropical forages. We generated a dataset composed of 1124 labeled images with 2 mobile phones 7 days after the harvest of the forage plants. Six architectures...
Autores principales: | Santos, Luiz, Junior, José Marcato, Zamboni, Pedro, Santos, Mateus, Jank, Liana, Campos, Edilene, Matsubara, Edson Takashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185313/ https://www.ncbi.nlm.nih.gov/pubmed/35684736 http://dx.doi.org/10.3390/s22114116 |
Ejemplares similares
-
Deep Learning Applied to Phenotyping of Biomass in Forages with UAV-Based RGB Imagery
por: Castro, Wellington, et al.
Publicado: (2020) -
A Semi-Automated SNP-Based Approach for Contaminant Identification in Biparental Polyploid Populations of Tropical Forage Grasses
por: Martins, Felipe Bitencourt, et al.
Publicado: (2021) -
The Compensatory Tillering in the Forage Grass Hordeum brevisubulatum After Simulated Grazing of Different Severity
por: Yuan, Jihong, et al.
Publicado: (2020) -
Convolutional Neural Networks to Estimate Dry Matter Yield in a Guineagrass Breeding Program Using UAV Remote Sensing
por: de Oliveira, Gabriel Silva, et al.
Publicado: (2021) -
Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat
por: Dong, Chunhao, et al.
Publicado: (2023)