Cargando…

Fall Detection with the Spatial-Temporal Correlation Encoded by a Sequence-to-Sequence Denoised GAN

Falling is a major cause of personal injury and accidental death worldwide, in particular for the elderly. For aged care, a falling alarm system is highly demanded so that medical aid can be obtained immediately when the fall accidents happen. Previous studies on fall detection lacked practical cons...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsu, Wei-Wen, Guo, Jing-Ming, Chen, Chien-Yu, Chang, Yao-Chung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185321/
https://www.ncbi.nlm.nih.gov/pubmed/35684812
http://dx.doi.org/10.3390/s22114194
Descripción
Sumario:Falling is a major cause of personal injury and accidental death worldwide, in particular for the elderly. For aged care, a falling alarm system is highly demanded so that medical aid can be obtained immediately when the fall accidents happen. Previous studies on fall detection lacked practical considerations to deal with real-world situations, including the camera’s mounting angle, lighting differences between day and night, and the privacy protection for users. In our experiments, IR-depth images and thermal images were used as the input source for fall detection; as a result, detailed facial information is not captured by the system for privacy reasons, and it is invariant to the lighting conditions. Due to the different occurrence rates between fall accidents and other normal activities, supervised learning approaches may suffer from the problem of data imbalance in the training phase. Accordingly, in this study, anomaly detection is performed using unsupervised learning approaches so that the models were trained only with the normal cases while the fall accident was defined as an anomaly event. The proposed system takes sequential frames as the inputs to predict future frames based on a GAN structure, and it provides (1) multi-subject detection, (2) real-time fall detection triggered by motion, (3) a solution to the situation that subjects were occluded after falling, and (4) a denoising scheme for depth images. The experimental results show that the proposed system achieves the state-of-the-art performance and copes with the real-world cases successfully.