Cargando…

Facial Expression Recognition from Multi-Perspective Visual Inputs and Soft Voting

Automatic identification of human facial expressions has many potential applications in today’s connected world, from mental health monitoring to feedback for onscreen content or shop windows and sign-language prosodic identification. In this work we use visual information as input, namely, a datase...

Descripción completa

Detalles Bibliográficos
Autores principales: Aguileta, Antonio A., Brena, Ramón F., Molino-Minero-Re, Erik, Galván-Tejada, Carlos E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185323/
https://www.ncbi.nlm.nih.gov/pubmed/35684825
http://dx.doi.org/10.3390/s22114206
_version_ 1784724696328044544
author Aguileta, Antonio A.
Brena, Ramón F.
Molino-Minero-Re, Erik
Galván-Tejada, Carlos E.
author_facet Aguileta, Antonio A.
Brena, Ramón F.
Molino-Minero-Re, Erik
Galván-Tejada, Carlos E.
author_sort Aguileta, Antonio A.
collection PubMed
description Automatic identification of human facial expressions has many potential applications in today’s connected world, from mental health monitoring to feedback for onscreen content or shop windows and sign-language prosodic identification. In this work we use visual information as input, namely, a dataset of face points delivered by a Kinect device. The most recent work on facial expression recognition uses Machine Learning techniques, to use a modular data-driven path of development instead of using human-invented ad hoc rules. In this paper, we present a Machine-Learning based method for automatic facial expression recognition that leverages information fusion architecture techniques from our previous work and soft voting. Our approach shows an average prediction performance clearly above the best state-of-the-art results for the dataset considered. These results provide further evidence of the usefulness of information fusion architectures rather than adopting the default ML approach of features aggregation.
format Online
Article
Text
id pubmed-9185323
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91853232022-06-11 Facial Expression Recognition from Multi-Perspective Visual Inputs and Soft Voting Aguileta, Antonio A. Brena, Ramón F. Molino-Minero-Re, Erik Galván-Tejada, Carlos E. Sensors (Basel) Article Automatic identification of human facial expressions has many potential applications in today’s connected world, from mental health monitoring to feedback for onscreen content or shop windows and sign-language prosodic identification. In this work we use visual information as input, namely, a dataset of face points delivered by a Kinect device. The most recent work on facial expression recognition uses Machine Learning techniques, to use a modular data-driven path of development instead of using human-invented ad hoc rules. In this paper, we present a Machine-Learning based method for automatic facial expression recognition that leverages information fusion architecture techniques from our previous work and soft voting. Our approach shows an average prediction performance clearly above the best state-of-the-art results for the dataset considered. These results provide further evidence of the usefulness of information fusion architectures rather than adopting the default ML approach of features aggregation. MDPI 2022-05-31 /pmc/articles/PMC9185323/ /pubmed/35684825 http://dx.doi.org/10.3390/s22114206 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Aguileta, Antonio A.
Brena, Ramón F.
Molino-Minero-Re, Erik
Galván-Tejada, Carlos E.
Facial Expression Recognition from Multi-Perspective Visual Inputs and Soft Voting
title Facial Expression Recognition from Multi-Perspective Visual Inputs and Soft Voting
title_full Facial Expression Recognition from Multi-Perspective Visual Inputs and Soft Voting
title_fullStr Facial Expression Recognition from Multi-Perspective Visual Inputs and Soft Voting
title_full_unstemmed Facial Expression Recognition from Multi-Perspective Visual Inputs and Soft Voting
title_short Facial Expression Recognition from Multi-Perspective Visual Inputs and Soft Voting
title_sort facial expression recognition from multi-perspective visual inputs and soft voting
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185323/
https://www.ncbi.nlm.nih.gov/pubmed/35684825
http://dx.doi.org/10.3390/s22114206
work_keys_str_mv AT aguiletaantonioa facialexpressionrecognitionfrommultiperspectivevisualinputsandsoftvoting
AT brenaramonf facialexpressionrecognitionfrommultiperspectivevisualinputsandsoftvoting
AT molinomineroreerik facialexpressionrecognitionfrommultiperspectivevisualinputsandsoftvoting
AT galvantejadacarlose facialexpressionrecognitionfrommultiperspectivevisualinputsandsoftvoting