Cargando…
Hierarchical Attention Neural Network for Event Types to Improve Event Detection
Event detection is an important task in the field of natural language processing, which aims to detect trigger words in a sentence and classify them into specific event types. Event detection tasks suffer from data sparsity and event instances imbalance problems in small-scale datasets. For this rea...
Autores principales: | Jin, Yanliang, Ye, Jinjin, Shen, Liquan, Xiong, Yong, Fan, Lele, Zang, Qingfu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185344/ https://www.ncbi.nlm.nih.gov/pubmed/35684826 http://dx.doi.org/10.3390/s22114202 |
Ejemplares similares
-
Malicious traffic detection combined deep neural network with hierarchical attention mechanism
por: Liu, Xiaoyang, et al.
Publicado: (2021) -
Hierarchical Classification of Event-Related Potentials for the Recognition of Gender Differences in the Attention Task
por: Maciejewska, Karina, et al.
Publicado: (2021) -
Capturing the nature of events and event context using hierarchical
event descriptors (HED)
por: Robbins, Kay, et al.
Publicado: (2021) -
Disentangling the attention network test: behavioral, event related potentials, and neural source analyses
por: Galvao-Carmona, Alejandro, et al.
Publicado: (2014) -
Polyphonic Sound Event Detection Using Temporal-Frequency Attention and Feature Space Attention
por: Jin, Ye, et al.
Publicado: (2022)