Cargando…
Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks
With the steep rise in the development of smart grids and the current advancement in developing measuring infrastructure, short term power consumption forecasting has recently gained increasing attention. In fact, the prediction of future power loads turns out to be a key issue to avoid energy wasta...
Autores principales: | Mahjoub, Sameh, Chrifi-Alaoui, Larbi, Marhic, Bruno, Delahoche, Laurent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185376/ https://www.ncbi.nlm.nih.gov/pubmed/35684681 http://dx.doi.org/10.3390/s22114062 |
Ejemplares similares
-
Attention based GRU-LSTM for software defect prediction
por: Munir, Hafiz Shahbaz, et al.
Publicado: (2021) -
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
por: Shahid, Farah, et al.
Publicado: (2020) -
An LSTM and GRU based trading strategy adapted to the Moroccan market
por: Touzani, Yassine, et al.
Publicado: (2021) -
Prediction of outpatients with conjunctivitis in Xinjiang based on LSTM and GRU models
por: Wang, Yijia, et al.
Publicado: (2023) -
Are GRU Cells More Specific and LSTM Cells More Sensitive in Motive Classification of Text?
por: Gruber, Nicole, et al.
Publicado: (2020)