Cargando…
Intelligent Fault Detection and Classification Based on Hybrid Deep Learning Methods for Hardware-in-the-Loop Test of Automotive Software Systems
Hardware-in-the-Loop (HIL) has been recommended by ISO 26262 as an essential test bench for determining the safety and reliability characteristics of automotive software systems (ASSs). However, due to the complexity and the huge amount of data recorded by the HIL platform during the testing process...
Autores principales: | Abboush, Mohammad, Bamal, Daniel, Knieke, Christoph, Rausch, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185421/ https://www.ncbi.nlm.nih.gov/pubmed/35684686 http://dx.doi.org/10.3390/s22114066 |
Ejemplares similares
-
Hardware-in-the-Loop-Based Real-Time Fault Injection Framework for Dynamic Behavior Analysis of Automotive Software Systems
por: Abboush, Mohammad, et al.
Publicado: (2022) -
GRU-Based Denoising Autoencoder for Detection and Clustering of Unknown Single and Concurrent Faults during System Integration Testing of Automotive Software Systems
por: Abboush, Mohammad, et al.
Publicado: (2023) -
How to Implement Automotive Fault Diagnosis Using Artificial Intelligence Scheme
por: Gong, Cihun-Siyong Alex, et al.
Publicado: (2022) -
List search hardware for intepretive software
por: Altaber, Jacques, et al.
Publicado: (1979) -
List search hardware for interpretive software
por: Altaber, Jacques, et al.
Publicado: (1979)