Cargando…
Noise2Kernel: Adaptive Self-Supervised Blind Denoising Using a Dilated Convolutional Kernel Architecture
With the advent of unsupervised learning, efficient training of a deep network for image denoising without pairs of noisy and clean images has become feasible. Most current unsupervised denoising methods are built on self-supervised loss with the assumption of zero-mean noise under the signal-indepe...
Autores principales: | Lee, Kanggeun, Jeong, Won-Ki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185435/ https://www.ncbi.nlm.nih.gov/pubmed/35684882 http://dx.doi.org/10.3390/s22114255 |
Ejemplares similares
-
USENIX Workshop on Micro-kernels and other Kernel Architectures
por: USENIX Association. Berkeley
Publicado: (1992) -
Self-supervised maize kernel classification and segmentation for embryo identification
por: Dong, David, et al.
Publicado: (2023) -
UnetDVH-Linear: Linear Feature Segmentation by Dilated Convolution with Vertical and Horizontal Kernels
por: Liao, Jiacai, et al.
Publicado: (2020) -
Professional Linux Kernel Architecture
por: Mauerer, Wolfgang
Publicado: (2008) -
Kernel graph filtering—A new method for dynamic sinogram denoising
por: Guo, Shiyao, et al.
Publicado: (2021)