Cargando…
BrainGAN: Brain MRI Image Generation and Classification Framework Using GAN Architectures and CNN Models
Deep learning models have been used in several domains, however, adjusting is still required to be applied in sensitive areas such as medical imaging. As the use of technology in the medical domain is needed because of the time limit, the level of accuracy assures trustworthiness. Because of privacy...
Autores principales: | Alrashedy, Halima Hamid N., Almansour, Atheer Fahad, Ibrahim, Dina M., Hammoudeh, Mohammad Ali A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185441/ https://www.ncbi.nlm.nih.gov/pubmed/35684918 http://dx.doi.org/10.3390/s22114297 |
Ejemplares similares
-
Multiclass Image Classification Using GANs and CNN Based on Holes Drilled in Laminated Chipboard
por: Wieczorek, Grzegorz, et al.
Publicado: (2021) -
Multiple Brain Tumor Classification with Dense CNN Architecture Using Brain MRI Images
por: Özkaraca, Osman, et al.
Publicado: (2023) -
Automatic Liver Segmentation in CT Images with Enhanced GAN and Mask Region-Based CNN Architectures
por: Wei, Xiaoqin, et al.
Publicado: (2021) -
A Hemolysis Image Detection Method Based on GAN-CNN-ELM
por: Shi, Xiaonan, et al.
Publicado: (2022) -
A hierarchical GAN method with ensemble CNN for accurate nodule detection
por: Rezaei, Seyed Reza, et al.
Publicado: (2022)