Cargando…
A Hybrid Deep Learning and Visualization Framework for Pushing Behavior Detection in Pedestrian Dynamics
Crowded event entrances could threaten the comfort and safety of pedestrians, especially when some pedestrians push others or use gaps in crowds to gain faster access to an event. Studying and understanding pushing dynamics leads to designing and building more comfortable and safe entrances. Researc...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185482/ https://www.ncbi.nlm.nih.gov/pubmed/35684663 http://dx.doi.org/10.3390/s22114040 |
_version_ | 1784724734187929600 |
---|---|
author | Alia, Ahmed Maree, Mohammed Chraibi, Mohcine |
author_facet | Alia, Ahmed Maree, Mohammed Chraibi, Mohcine |
author_sort | Alia, Ahmed |
collection | PubMed |
description | Crowded event entrances could threaten the comfort and safety of pedestrians, especially when some pedestrians push others or use gaps in crowds to gain faster access to an event. Studying and understanding pushing dynamics leads to designing and building more comfortable and safe entrances. Researchers—to understand pushing dynamics—observe and analyze recorded videos to manually identify when and where pushing behavior occurs. Despite the accuracy of the manual method, it can still be time-consuming, tedious, and hard to identify pushing behavior in some scenarios. In this article, we propose a hybrid deep learning and visualization framework that aims to assist researchers in automatically identifying pushing behavior in videos. The proposed framework comprises two main components: (i) Deep optical flow and wheel visualization; to generate motion information maps. (ii) A combination of an EfficientNet-B0-based classifier and a false reduction algorithm for detecting pushing behavior at the video patch level. In addition to the framework, we present a new patch-based approach to enlarge the data and alleviate the class imbalance problem in small-scale pushing behavior datasets. Experimental results (using real-world ground truth of pushing behavior videos) demonstrate that the proposed framework achieves an 86% accuracy rate. Moreover, the EfficientNet-B0-based classifier outperforms baseline CNN-based classifiers in terms of accuracy. |
format | Online Article Text |
id | pubmed-9185482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91854822022-06-11 A Hybrid Deep Learning and Visualization Framework for Pushing Behavior Detection in Pedestrian Dynamics Alia, Ahmed Maree, Mohammed Chraibi, Mohcine Sensors (Basel) Article Crowded event entrances could threaten the comfort and safety of pedestrians, especially when some pedestrians push others or use gaps in crowds to gain faster access to an event. Studying and understanding pushing dynamics leads to designing and building more comfortable and safe entrances. Researchers—to understand pushing dynamics—observe and analyze recorded videos to manually identify when and where pushing behavior occurs. Despite the accuracy of the manual method, it can still be time-consuming, tedious, and hard to identify pushing behavior in some scenarios. In this article, we propose a hybrid deep learning and visualization framework that aims to assist researchers in automatically identifying pushing behavior in videos. The proposed framework comprises two main components: (i) Deep optical flow and wheel visualization; to generate motion information maps. (ii) A combination of an EfficientNet-B0-based classifier and a false reduction algorithm for detecting pushing behavior at the video patch level. In addition to the framework, we present a new patch-based approach to enlarge the data and alleviate the class imbalance problem in small-scale pushing behavior datasets. Experimental results (using real-world ground truth of pushing behavior videos) demonstrate that the proposed framework achieves an 86% accuracy rate. Moreover, the EfficientNet-B0-based classifier outperforms baseline CNN-based classifiers in terms of accuracy. MDPI 2022-05-26 /pmc/articles/PMC9185482/ /pubmed/35684663 http://dx.doi.org/10.3390/s22114040 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alia, Ahmed Maree, Mohammed Chraibi, Mohcine A Hybrid Deep Learning and Visualization Framework for Pushing Behavior Detection in Pedestrian Dynamics |
title | A Hybrid Deep Learning and Visualization Framework for Pushing Behavior Detection in Pedestrian Dynamics |
title_full | A Hybrid Deep Learning and Visualization Framework for Pushing Behavior Detection in Pedestrian Dynamics |
title_fullStr | A Hybrid Deep Learning and Visualization Framework for Pushing Behavior Detection in Pedestrian Dynamics |
title_full_unstemmed | A Hybrid Deep Learning and Visualization Framework for Pushing Behavior Detection in Pedestrian Dynamics |
title_short | A Hybrid Deep Learning and Visualization Framework for Pushing Behavior Detection in Pedestrian Dynamics |
title_sort | hybrid deep learning and visualization framework for pushing behavior detection in pedestrian dynamics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185482/ https://www.ncbi.nlm.nih.gov/pubmed/35684663 http://dx.doi.org/10.3390/s22114040 |
work_keys_str_mv | AT aliaahmed ahybriddeeplearningandvisualizationframeworkforpushingbehaviordetectioninpedestriandynamics AT mareemohammed ahybriddeeplearningandvisualizationframeworkforpushingbehaviordetectioninpedestriandynamics AT chraibimohcine ahybriddeeplearningandvisualizationframeworkforpushingbehaviordetectioninpedestriandynamics AT aliaahmed hybriddeeplearningandvisualizationframeworkforpushingbehaviordetectioninpedestriandynamics AT mareemohammed hybriddeeplearningandvisualizationframeworkforpushingbehaviordetectioninpedestriandynamics AT chraibimohcine hybriddeeplearningandvisualizationframeworkforpushingbehaviordetectioninpedestriandynamics |