Cargando…

Retina-like Computational Ghost Imaging for an Axially Moving Target

Unlike traditional optical imaging schemes, computational ghost imaging (CGI) provides a way to reconstruct images with the spatial distribution information of illumination patterns and the light intensity collected by a single-pixel detector or bucket detector. Compared with stationary scenes, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yingqiang, Cao, Jie, Cui, Huan, Zhou, Dong, Han, Bin, Hao, Qun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185527/
https://www.ncbi.nlm.nih.gov/pubmed/35684911
http://dx.doi.org/10.3390/s22114290
Descripción
Sumario:Unlike traditional optical imaging schemes, computational ghost imaging (CGI) provides a way to reconstruct images with the spatial distribution information of illumination patterns and the light intensity collected by a single-pixel detector or bucket detector. Compared with stationary scenes, the relative motion between the target and the imaging system in a dynamic scene causes the degradation of reconstructed images. Therefore, we propose a time-variant retina-like computational ghost imaging method for axially moving targets. The illuminated patterns are specially designed with retina-like structures, and the radii of foveal region can be modified according to the axial movement of target. By using the time-variant retina-like patterns and compressive sensing algorithms, high-quality imaging results are obtained. Experimental verification has shown its effectiveness in improving the reconstruction quality of axially moving targets. The proposed method retains the inherent merits of CGI and provides a useful reference for high-quality GI reconstruction of a moving target.