Cargando…
A Combined Semi-Supervised Deep Learning Method for Oil Leak Detection in Pipelines Using IIoT at the Edge
Pipelines are integral components for storing and transporting liquid and gaseous petroleum products. Despite being durable structures, ruptures can still occur, resulting not only in financial losses and energy waste but, most importantly, in immeasurable environmental disasters and possibly in hum...
Autores principales: | Spandonidis, Christos, Theodoropoulos, Panayiotis, Giannopoulos, Fotis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185534/ https://www.ncbi.nlm.nih.gov/pubmed/35684726 http://dx.doi.org/10.3390/s22114105 |
Ejemplares similares
-
Validation of High-Availability Model for Edge Devices and IIoT
por: Peniak, Peter, et al.
Publicado: (2023) -
Secure IIoT Information Reinforcement Model Based on IIoT Information Platform Using Blockchain
por: Jeong, Yoon-Su
Publicado: (2022) -
Analysis of architectures implemented for IIoT
por: Oñate, William, et al.
Publicado: (2023) -
StreamPipes Connect: Semantics-Based Edge Adapters for the IIoT
por: Zehnder, Philipp, et al.
Publicado: (2020) -
A Deep Learning-Based Fault Detection Model for Optimization of Shipping Operations and Enhancement of Maritime Safety
por: Theodoropoulos, Panayiotis, et al.
Publicado: (2021)