Cargando…

Fiber Bragg Grating-Based Smart Garment for Monitoring Human Body Temperature

Body temperature provides an insight into the physiological state of a person, and body temperature changes reflect much information about human health. In this study, a garment for monitoring human body temperature based on fiber Bragg grating (FBG) sensors is reported. The FBG sensor was encapsula...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiujuan, Jiang, Yaming, Xu, Siyi, Liu, Hao, Li, Xiaozhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185545/
https://www.ncbi.nlm.nih.gov/pubmed/35684873
http://dx.doi.org/10.3390/s22114252
Descripción
Sumario:Body temperature provides an insight into the physiological state of a person, and body temperature changes reflect much information about human health. In this study, a garment for monitoring human body temperature based on fiber Bragg grating (FBG) sensors is reported. The FBG sensor was encapsulated with a PMMA tube and calibrated in the thermostatic water bath. The results showed that FBG sensors had good vibration resistance, and the wavelength changed about 0–1 pm at a 0.5–80 Hz vibration frequency. The bending path of the optical fiber after integration with clothing is discussed. When the bending radius is equal to or greater than 20 mm, a lower bending loss can be achieved even under the bending and stretching of the human body. The FBG sensor, the optical fiber, and the garment were integrated together using hot melt glue by the electric iron and the hot press machine. Through experiments of monitoring human body temperature, the sensor can reach the human armpit temperature in about 10–15 min with the upper arm close to the torso. Because it is immune to electromagnetic interferences, the smart garment can be used in some special environments such as ultrasonography, magnetic resonance (MR), and aerospace.