Cargando…
A Dynamic Convolution Kernel Generation Method Based on Regularized Pattern for Image Super-Resolution
Image super-resolution aims to reconstruct a high-resolution image from its low-resolution counterparts. Conventional image super-resolution approaches share the same spatial convolution kernel for the whole image in the upscaling modules, which neglect the specificity of content information in diff...
Autores principales: | Feng, Hesen, Ma, Lihong, Tian, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185547/ https://www.ncbi.nlm.nih.gov/pubmed/35684852 http://dx.doi.org/10.3390/s22114231 |
Ejemplares similares
-
Blur Kernel Estimation and Non-Blind Super-Resolution for Power Equipment Infrared Images by Compressed Sensing and Adaptive Regularization
por: Zhao, Hongshan, et al.
Publicado: (2021) -
A Frobenius Norm Regularization Method for Convolutional Kernel Tensors in Neural Networks
por: Guo, Pei-Chang
Publicado: (2022) -
Kernel Estimation Using Total Variation Guided GAN for Image Super-Resolution
por: Park, Jongeun, et al.
Publicado: (2023) -
Joint bayesian convolutional sparse coding for image super-resolution
por: Ge, Qi, et al.
Publicado: (2018) -
Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images
por: Kang, Wonseok, et al.
Publicado: (2015)