Cargando…
Wide Residual Relation Network-Based Intelligent Fault Diagnosis of Rotating Machines with Small Samples
Many existing fault diagnosis methods based on deep learning (DL) require numerous fault samples to train the diagnosis model. However, in industrial applications, rotating machines (RMs) operate in normal states for most of their service life with fault events being rare and thus failure samples ar...
Autores principales: | Chen, Zuoyi, Wang, Yuanhang, Wu, Jun, Deng, Chao, Jiang, Weixiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185568/ https://www.ncbi.nlm.nih.gov/pubmed/35684782 http://dx.doi.org/10.3390/s22114161 |
Ejemplares similares
-
Research on an intelligent diagnosis method of mechanical faults for small sample data sets
por: Zhao, Jun, et al.
Publicado: (2022) -
Intelligent fault diagnosis and remaining useful life prediction of rotating machinery
por: Lei, Yaguo
Publicado: (2016) -
Sensor Data-Driven Bearing Fault Diagnosis Based on Deep Convolutional Neural Networks and S-Transform
por: Li, Guoqiang, et al.
Publicado: (2019) -
Improved Variational Mode Decomposition and CNN for Intelligent Rotating Machinery Fault Diagnosis
por: Xiao, Qiyang, et al.
Publicado: (2022) -
An Intelligent Multi-Local Model Bearing Fault Diagnosis Method Using Small Sample Fusion
por: Zhou, Xianzhang, et al.
Publicado: (2023)