Cargando…
Transfer Learning for Sentiment Analysis Using BERT Based Supervised Fine-Tuning
The growth of the Internet has expanded the amount of data expressed by users across multiple platforms. The availability of these different worldviews and individuals’ emotions empowers sentiment analysis. However, sentiment analysis becomes even more challenging due to a scarcity of standardized l...
Autores principales: | Prottasha, Nusrat Jahan, Sami, Abdullah As, Kowsher, Md, Murad, Saydul Akbar, Bairagi, Anupam Kumar, Masud, Mehedi, Baz, Mohammed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185586/ https://www.ncbi.nlm.nih.gov/pubmed/35684778 http://dx.doi.org/10.3390/s22114157 |
Ejemplares similares
-
BERT’s sentiment score for portfolio optimization: a fine-tuned view in Black and Litterman model
por: Colasanto, Francesco, et al.
Publicado: (2022) -
A BERT Framework to Sentiment Analysis of Tweets
por: Bello, Abayomi, et al.
Publicado: (2023) -
Fine-tuning of BERT Model to Accurately Predict Drug–Target Interactions
por: Kang, Hyeunseok, et al.
Publicado: (2022) -
Performance evaluation of micro lens arrays: Improvement of light intensity and efficiency of white organic light emitting diodes
por: Adhikary, Apurba, et al.
Publicado: (2022) -
A Fine-Tuned BERT-Based Transfer Learning Approach for Text Classification
por: Qasim, Rukhma, et al.
Publicado: (2022)