Cargando…
Contactless Waveguide Characterization of Piezoresistive Materials for Wireless Strain Sensors
Stretchable materials are widely used for the realization of various sensors, but their radio frequency behavior has not been fully characterized so far. Here, an innovative method is proposed for deriving the surface impedance of this kind of materials. The material characterization represents a fu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185637/ https://www.ncbi.nlm.nih.gov/pubmed/35684710 http://dx.doi.org/10.3390/s22114085 |
Sumario: | Stretchable materials are widely used for the realization of various sensors, but their radio frequency behavior has not been fully characterized so far. Here, an innovative method is proposed for deriving the surface impedance of this kind of materials. The material characterization represents a fundamental step for exploiting the material as a sensing element within a radio frequency device. Indeed, the proposed method is capable of retrieving the surface impedance of the material while it is being stretched, thus deriving a correspondent calibration curve. The characterization approach is based on a contactless measurement of the scattering parameters using waveguides. By exploiting the measured scattering parameters, the variation in the surface impedance as a function of both frequency and strain is recovered through an analytical inversion procedure. Numerical simulations were initially performed trough a numerical electromagnetic simulator, and subsequently, experimental validation was carried out using a dedicated test bench designed to ensure a contactless measurement of the stretchable material. |
---|