Cargando…
Stability of two-dimensional potential flows using bicomplex numbers
The use of the complex velocity potential and the complex velocity is widely disseminated in the study of two-dimensional incompressible potential flows. The advantages of working with complex analytical functions made this representation of the flow ubiquitous in the field of theoretical aerodynami...
Autores principales: | Kleine, V. G., Hanifi, A., Henningson, D. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185835/ https://www.ncbi.nlm.nih.gov/pubmed/35702595 http://dx.doi.org/10.1098/rspa.2022.0165 |
Ejemplares similares
-
Bicomplex holomorphic functions: the algebra, geometry and analysis of bicomplex numbers
por: Luna-Elizarrarás, M Elena, et al.
Publicado: (2015) -
Basics of functional analysis with bicomplex scalars, and bicomplex Schur analysis
por: Alpay, Daniel, et al.
Publicado: (2014) -
Stability and transition in shear flows
por: Schmid, Peter J, et al.
Publicado: (2001) -
Four-dimensional BPS-spectra via M-theory
por: Henningson, Mans, et al.
Publicado: (1997) -
Pressure-Gradient Turbulent Boundary Layers Developing Around a Wing Section
por: Vinuesa, Ricardo, et al.
Publicado: (2017)