Cargando…
Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome
Existing methods for computational prediction of transcription factor (TF) binding sites evaluate genomic regions with similarity to known TF sequence preferences. Most TF binding sites, however, do not resemble known TF sequence motifs, and many TFs are not sequence-specific. We developed Virtual C...
Autores principales: | Karimzadeh, Mehran, Hoffman, Michael M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185870/ https://www.ncbi.nlm.nih.gov/pubmed/35681170 http://dx.doi.org/10.1186/s13059-022-02690-2 |
Ejemplares similares
-
MM-ChIP enables integrative analysis of cross-platform and between-laboratory ChIP-chip or ChIP-seq data
por: Chen, Yiwen, et al.
Publicado: (2011) -
Optimized detection of transcription factor-binding sites in ChIP-seq experiments
por: Elo, Laura L., et al.
Publicado: (2012) -
De novo ChIP-seq analysis
por: He, Xin, et al.
Publicado: (2015) -
HyperChIP: identification of hypervariable signals across ChIP-seq or ATAC-seq samples
por: Chen, Haojie, et al.
Publicado: (2022) -
CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins
por: Savic, Daniel, et al.
Publicado: (2015)