Cargando…

Application of vancomycin-impregnated calcium sulfate hemihydrate/nanohydroxyapatite/carboxymethyl chitosan injectable hydrogels combined with BMSC sheets for the treatment of infected bone defects in a rabbit model

BACKGROUND: The choice of bone substitutes for the treatment of infected bone defects (IBDs) has attracted the attention of surgeons for years. However, single-stage bioabsorbable materials that are used as carriers for antibiotic release, as well as scaffolds for BMSC sheets, need further explorati...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yanjun, Zhao, Zihou, Liu, Shiyu, Luo, Wen, Wang, Guoliang, Zhu, Zhenfeng, Ma, Qiong, Liu, Yunyan, Wang, Linhu, Lu, Shuaikun, Zhang, Yong, Qian, Jixian, Zhang, Yunfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185966/
https://www.ncbi.nlm.nih.gov/pubmed/35681160
http://dx.doi.org/10.1186/s12891-022-05499-z
Descripción
Sumario:BACKGROUND: The choice of bone substitutes for the treatment of infected bone defects (IBDs) has attracted the attention of surgeons for years. However, single-stage bioabsorbable materials that are used as carriers for antibiotic release, as well as scaffolds for BMSC sheets, need further exploration. Our study was designed to investigate the effect of vancomycin-loaded calcium sulfate hemihydrate/nanohydroxyapatite/carboxymethyl chitosan (CSH/n-HA/CMCS) hydrogels combined with BMSC sheets as bone substitutes for the treatment of IBDs. METHODS: BMSCs were harvested and cultured into cell sheets. After the successful establishment of an animal model with chronic osteomyelitis, 48 New Zealand white rabbits were randomly divided into 4 groups. Animals in Group A were treated with thorough debridement as a control. Group B was treated with BMSC sheets. CSH/n-HA/CMCS hydrogels were implanted in the treatment of Group C, and Group D was treated with CSH/n-HA/CMCS+BMSC sheets. Gross observation and micro-CT 3D reconstruction were performed to assess the osteogenic and infection elimination abilities of the treatment materials. Histological staining (haematoxylin and eosin and Van Gieson) was used to observe inflammatory cell infiltration and the formation of collagen fibres at 4, 8, and 12 weeks after implantation. RESULTS: The bone defects of the control group were not repaired at 12 weeks, as chronic osteomyelitis was still observed. HE staining showed a large amount of inflammatory cell infiltration around the tissue, and VG staining showed no new collagen fibres formation. In the BMSC sheet group, although new bone formation was observed by gross observation and micro-CT scanning, infection was not effectively controlled due to unfilled cavities. Some neutrophils and only a small amount of collagen fibres could be observed. Both the hydrogel and hydrogel/BMSCs groups achieved satisfactory repair effects and infection control. Micro-CT 3D reconstruction at 4 weeks showed that the hydrogel/BMSC sheet group had higher reconstruction efficiency and better bone modelling with normal morphology. HE staining showed little aggregation of inflammatory cells, and VG staining showed a large number of new collagen fibres. CONCLUSIONS: Our preliminary results suggested that compared to a single material, the novel antibiotic-impregnated hydrogels acted as superior scaffolds for BMSC sheets and excellent antibiotic vectors against infection, which provided a basis for applying tissue engineering technology to the treatment of chronic osteomyelitis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12891-022-05499-z.